We consider the transmission problem for the Laplace operator in a straight cylinder with data in . Applying the theory of the sums of operators in Banach spaces, we prove that the solution admits a decomposition into a regular part in and an explicit singular part.
Consideriamo il problema di trasmissione per l'operatore di Laplace per un cilindro retto con dati in . Applicando la teoria delle somme di operatori negli spazi di Banach, dimostriamo che la soluzione ammette una decomposizione in una parte regolare in e una parte singolare esplicita.
@article{BUMI_2007_8_10B_3_633_0, author = {Aissa Aibeche and Wided Chikouche and Serge Nicaise}, title = {$L^p$Regularity of Transmission Problems in Dihedral Domains}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {633-660}, zbl = {1178.47005}, mrnumber = {2351535}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_633_0} }
Aibeche, Aissa; Chikouche, Wided; Nicaise, Serge. $L^p$Regularity of Transmission Problems in Dihedral Domains. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 633-660. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_633_0/
[1] Generation of analytic semi-groups in by the Laplace operator, Bollettino UMI, Analisi Funzionale e Applicazioni, Serie VI, Vol. IV-C, no. 1 (1985), 113-128. | MR 805208 | Zbl 0597.35035
,[2] On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math., 15 (1962), 119-147. | MR 147774 | Zbl 0109.32701
,[3] On the spectral theory of elliptic differential operators, I, Math. Ann., 142 (1960/61), 22-130. | MR 209909
,[4] A geometrical characterisation of Banach spaces in which martingale difference sequences are unconditional, Ann. Probab., 9, (1981), 997-1011. | MR 632972 | Zbl 0474.60036
,[5] Somme d'opérateurs et régularité dans les problémes aux limites, C. R. Acad. Sci., Paris, 314 (1992), 821-824. | MR 1166054 | Zbl 0773.47033
- ,[6] 31, A.M.S., Providence, Rhode Island, 1977. | MR 481928 | Zbl 0371.43009
- , Transference methods in analysis, C.B.M.S. regional conference series in Math.,[7] Generation of analytic semi-groups by elliptic operators of second order in Hölder spaces, Ann. Scuola Nor. Sup. Pisa, 8 (1981), 495-512. | MR 634859
,[8] Somme d'opérateurs linéaires et équations différentielles opérationnelles, J. Math. Pures Appl. IX Ser., 54 (1975). | MR 442749 | Zbl 0315.47009
- ,[9] On the closedness of the sum of two closed operators, Mathematische Zeitschrift, 196 (1987), 270-286. | MR 910825 | Zbl 0615.47002
- ,[10] Study of the limit of transmission problems in a thin layer by the sum theory of linear operators, Rev. Mat. Complut., 18 (2005), 143-176. | MR 2135536 | Zbl 1144.34357
- - - ,[11] Equations différentielles abstraites, Annales de L'ENS, série 4, tome 2 (1969), 311-395. | MR 270209 | Zbl 0193.43502
,[12] 24, Pitman, Boston, 1985. | MR 775683 | Zbl 0695.35060
, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics[13] Edge behaviour of the solution of an elliptic problem, Math. Nachr., 132 (1987), 281-299. | MR 910057 | Zbl 0639.35008
,[14] Problèmes aux limites dans les polygones, Mode d'emploi. EDF, Bulletin de la direction des études et des recherches, Série C, Mathématiques informatique, 1 (1989), 21-59. | MR 840970
,[15] 22, MassonSpringer-Verlag, 1992. | MR 1173209 | Zbl 0766.35001
, Singularities in boundary value problems, Research notes in appl. Maths,[16] Singular behaviour of elliptic problems in non Hilbertian Sobolev spaces, J. Math. Pures Appl., 74 (1995), 3-33. | MR 1313613 | Zbl 0854.35018
,[17] Elliptic interface problems in axisymmetric domains. Part I: Singular functions of non-tensorial type, Math. Nachr, 186 (1997), 147-165. | MR 1461218 | Zbl 0890.35035
- - ,[18] Singular behavior of the Dirichlet problem in Hölder spaces of the solutions to the Dirichlet problem in a cone, Rend. Ist. Mat. Univ. Trieste, 30 (1998), 155-179. | MR 1704849 | Zbl 0952.35020
- - ,[19] | MR 1850825 | Zbl 0971.47011
- , The Theory of Fractional Powers of Operators, Saul Lubkin, North-Holland, 2001.[20] On the Resolution of the Heat Equation with Discontinuous Coefficients, Semigroup Forum, 60 (2000), 187-201. | MR 1830127 | Zbl 0942.35090
,[21] | MR 1236228
, Polygonal interface problems, Peter Lang, Berlin, 1993.[22] 44, Springer-Verlag, New York, 1983. | MR 710486 | Zbl 0516.47023
, Semigroups of linear operators and applications to partial differential equations, Applied Math. Sciences,[23] Equation of Parabolic type in Banach space, Amer. Math. Soc. Transl., 2 (1965), 1-62.
,[24] Generation of analytic semi-groups by strongly elliptic operators, Amer. Math. Soc. Transl., 199 (1974), 141-162. | MR 358067 | Zbl 0264.35043
,