We study the Banach-Lie group of Lie automorphisms of a complex associative -algebra. Also some consequences about its Lie algebra, the algebra of Lie derivations of , are obtained. For a topologically simple , in the infinite-dimensional case we have implying . In the finite dimensional case is a direct product of and a certain subgroup of Lie derivations from to its center, annihilating commutators.
Studiamo il gruppo di Banach-Lie degli automorfismi di Lie di una -algebra associativa complessa. Vengono anche ottenute alcune conseguenze riguardanti la sua algebra di Lie, cioè l'algebra delle derivazioni di Lie di . Per una topologicamente semplice, nel caso di dimensione infinita si ha , il che implica che . Nel caso di dimensione finita, è il prodotto diretto di e di un certo sottogruppo di derivazioni di Lie da al suo centro, che annullano i commutatori.
@article{BUMI_2007_8_10B_3_623_0, author = {Antonio J. Calder\'on Mart\'\i n and Candido Mart\'\i n Gonz\'alez}, title = {The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {623-631}, zbl = {1145.46033}, mrnumber = {2351534}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_623_0} }
Calderón Martín, Antonio J.; Martín González, Candido. The Banach-Lie Group of Lie Automorphisms of an $H^*$-Algebra. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 623-631. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_623_0/
[1] Structure theorems for a special class of Banach Algebras, Trans. Amer. Math. Soc.57 (1945), 364-386. | MR 13235 | Zbl 0060.26906
,[2] Commuting traces of biadditive mappings, commutativity preserving mappings and Lie mappings, Trans. Amer. Math. Soc.335 (1993), 525-546. | MR 1069746 | Zbl 0791.16028
,[3] Structurable -algebras, J. Algebra 147 (1992) 19-62. | MR 1154673
- - ,[4] Lie isomorphisms on -algebras, Comm. Algebra, 31 No. 1 (2003), 333-343. | MR 1969226
- ,[5] Sobre -álgebras no asociativas. Teoría de estructura de las -álgebras de Jordan no conmutativas semisimples, Tesis Doctoral, Universidad de a Granada, 1982. | MR 853913
,[6] Structure Theory for -álgebras, Math. Proc. Cambridge Philos. Soc. 107, No. 2 (1990), 361-365. | MR 1027788
- - ,[7] Structure Theory for noncommutative Jordan -algebras, J. Algebra, 106 (1987), 1-14. | MR 878465
- ,[8] | MR 143793
, Lie algebras, Interscience. 1962.[9] 37, Amer. Math. Soc., second edition, 1956. | MR 81264 | Zbl 0073.02002
, Structure of Rings, Colloq. Publ. Vol.[10] | MR 276398 | Zbl 0223.17001
, Lie algebras and locally compact groups, The University of Chicago Press. 1971.[11] Lie and Jordan derivations from Von Neumann Algebras, Preprint.
- ,[12] Hilbert Space methods in the theory of Lie algebras, Trans. Amer. Math. Soc., 95 (1960), 69-80. | MR 117575 | Zbl 0093.30601
,[13] On the topology of the group of invertible elements, arXiv:math.KT/9810069v1, 1998.
,[14] Symmetric Banach Manifolds and Jordan -algebras, North-Holland Math. Studies, 104 (1985). | MR 776786
,[15] Continuity of Derivations on -algebras, Proc. Amer. Math. Soc., 122 (1994), 821-826. | MR 1207543 | Zbl 0822.46061
,