In this paper we classify the finite simple groups that admit an irreducible complex character of prime power degree which is reducible over any proper sub-group.
In questo lavoro si classificano i gruppi semplici finiti che ammettono un carattere complesso irriducibile avente grado la potenza di un primo e la cui restrizione ad ogni sottogruppo proprio è riducibile.
@article{BUMI_2007_8_10B_3_613_0, author = {Marco Antonio Pellegrini}, title = {Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {613-621}, zbl = {1167.20306}, mrnumber = {2351533}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_613_0} }
Pellegrini, Marco Antonio. Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 613-621. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_613_0/
[1] Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64, no. 2, (2001), 344-356. | MR 1853455 | Zbl 1018.20008
- - - ,[2] | MR 794307 | Zbl 0567.20023
, Finite groups of Lie type. Conjugacy classes and complex characters. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1985.[3] | MR 827219 | Zbl 0568.20001
- - - - , Atlas of finite groups. Oxford University Press, 1985.[4] | MR 892316 | Zbl 0616.20001
- , Methods of representation theory. Vol. II. With applications to finite groups and orders, A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1987.[5] Minimally irreducible groups of prime degree, Bull. Austral. Math. Soc., 62, no. 2 (2000), 335-345. | MR 1786216 | Zbl 0973.20042
- ,[6] On minimally irreducible groups of degree the product of two primes, J. Group Theory, 6, no. 1 (2003), 11-56. | MR 1953793 | Zbl 1048.20028
- - ,[7] | MR 347959 | Zbl 0227.20002
, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971.[8] Weil representations associated to finite fields, J. Algebra, 46, (1) (1977), 54-101. | MR 460477
,[9] On the character of Weil's representation, Trans. Amer. Math. Soc., 177, (1973), 287-298. | MR 316633 | Zbl 0263.22014
,[10] 134, Springer-Verlag, Berlin-New York1967. | MR 224703
, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band[11] 129. Cambridge University Press, Cambridge, 1990. | MR 1057341 | Zbl 0697.20004
- , The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series,[12] Generation of classical groups, Geom. Dedicata, 49, no. 1 (1994), 85-116.. | MR 1261575 | Zbl 0832.20029
- - ,[13] Prime power degree representations of quasi-simple groups, Arch. Math. (Basel) 77, no. 6 (2001), 461-468. | MR 1879049 | Zbl 0996.20006
- !,[14] A generalized Cameron-Kantor Theorem, J. Algebra, 304, no. 1 (2006), 397-418. | MR 2256399
,[15] Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27-56. | MR 340446 | Zbl 0338.20052
,[16] Some representations of classical groups, J. London Math. Soc. (2) 10 (1975), 115-120. | MR 369556 | Zbl 0333.20039
,[17] Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., 3 (1892), 265-284. | MR 1546236
,