Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree
Pellegrini, Marco Antonio
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 613-621 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we classify the finite simple groups that admit an irreducible complex character of prime power degree which is reducible over any proper sub-group.

In questo lavoro si classificano i gruppi semplici finiti che ammettono un carattere complesso irriducibile avente grado la potenza di un primo e la cui restrizione ad ogni sottogruppo proprio è riducibile.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_613_0,
     author = {Marco Antonio Pellegrini},
     title = {Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {613-621},
     zbl = {1167.20306},
     mrnumber = {2351533},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_613_0}
}
Pellegrini, Marco Antonio. Finite Simple Groups Admitting Minimally Irreducible Characters of Prime Power Degree. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 613-621. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_613_0/

[1] Balog, A. - Bessenrodt, C. - Olsson, J. B. - Ono, K., Prime power degree representations of the symmetric and alternating groups, J. London Math. Soc. (2) 64, no. 2, (2001), 344-356. | MR 1853455 | Zbl 1018.20008

[2] Carter, R. W., Finite groups of Lie type. Conjugacy classes and complex characters. A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1985. | MR 794307 | Zbl 0567.20023

[3] Conway, J. H. - Curtis, R. T. - Norton, S. P. - Parker, R. A. - Wilson, R. A., Atlas of finite groups. Oxford University Press, 1985. | MR 827219 | Zbl 0568.20001

[4] Curtis, C. W. - Reiner, I., Methods of representation theory. Vol. II. With applications to finite groups and orders, A Wiley-Interscience Publication. John Wiley and Sons, Inc., New York, 1987. | MR 892316 | Zbl 0616.20001

[5] Dalla Volta, F. - Di Martino, L., Minimally irreducible groups of prime degree, Bull. Austral. Math. Soc., 62, no. 2 (2000), 335-345. | MR 1786216 | Zbl 0973.20042

[6] Dalla Volta, F. - Di Martino, L. - Previtali, A., On minimally irreducible groups of degree the product of two primes, J. Group Theory, 6, no. 1 (2003), 11-56. | MR 1953793 | Zbl 1048.20028

[7] Dornhoff, L., Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. | MR 347959 | Zbl 0227.20002

[8] Gérardin, P., Weil representations associated to finite fields, J. Algebra, 46, (1) (1977), 54-101. | MR 460477

[9] Howe, R. E., On the character of Weil's representation, Trans. Amer. Math. Soc., 177, (1973), 287-298. | MR 316633 | Zbl 0263.22014

[10] Huppert, B., Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York1967. | MR 224703

[11] Kleidman, P. - Liebeck, M., The subgroup structure of the finite classical groups, London Mathematical Society Lecture Note Series, 129. Cambridge University Press, Cambridge, 1990. | MR 1057341 | Zbl 0697.20004

[12] Malle, G. - Saxl, J. - Weigel, T., Generation of classical groups, Geom. Dedicata, 49, no. 1 (1994), 85-116.. | MR 1261575 | Zbl 0832.20029

[13] Malle, G. - Zalesskii, A. E.!, Prime power degree representations of quasi-simple groups, Arch. Math. (Basel) 77, no. 6 (2001), 461-468. | MR 1879049 | Zbl 0996.20006

[14] Pellegrini, M. A., A generalized Cameron-Kantor Theorem, J. Algebra, 304, no. 1 (2006), 397-418. | MR 2256399

[15] Seitz, G. M., Flag-transitive subgroups of Chevalley groups, Ann. of Math. (2) 97 (1973), 27-56. | MR 340446 | Zbl 0338.20052

[16] Seitz, G. M., Some representations of classical groups, J. London Math. Soc. (2) 10 (1975), 115-120. | MR 369556 | Zbl 0333.20039

[17] Zsigmondy, K., Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys., 3 (1892), 265-284. | MR 1546236