The Probabilistic Zeta Function of the Alternating Group Alt(p+1)
Massa, Marilena
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 581-591 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the irreducibility of the Dirichlet polynomial PG(s) when G is the alternating group on p+1 elements with p prime and we prove that PG(s) is irreducible for infinitely many choiches of p.

Si studia l'irriducibilità del polinomio di Dirichlet PG(s) nel caso in cui G sia il gruppo alterno di grado p+1, con p primo, e si prova che PG(s) è irriducibile per infinite scelte di p.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_581_0,
     author = {Marilena Massa},
     title = {The Probabilistic Zeta Function of the Alternating Group $\operatorname{Alt} (p + 1)$},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {581-591},
     zbl = {1167.20317},
     mrnumber = {2351530},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_581_0}
}
Massa, Marilena. The Probabilistic Zeta Function of the Alternating Group $\operatorname{Alt} (p + 1)$. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 581-591. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_581_0/

[1] Alladi, K. - Solomon, R. - Turull, A., Finite simple groups of bounded subgroup chain length, J. Algebra, 231 (2000), 374-386. | MR 1779605 | Zbl 0962.20014

[2] Boston, Nigel, A probabilistic generalization of the Riemann zeta function, Analytic number theory, Vol. 1 (Allerton Park, IL, 1995) 138 (1996), 155-162. | MR 1399336 | Zbl 0853.11075

[3] Brown, Kenneth S., The coset poset and probabilistic zeta function of a finite group, J. Algebra, 225, no. 2 (2000), 989-1012. | MR 1741574 | Zbl 0973.20016

[4] Damian, ErikaAndrea, - LUCCHINI Fiorenza, - MORINI, Some properties of the probabilistic zeta function of finite simple groups, Pacific J. Math., 215 (2004), 3-14. | MR 2060491 | Zbl 1113.20063

[5] Dixon, John D. - Mortimer, Brian, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. | MR 1409812 | Zbl 0951.20001

[6] Hall, Philip, The eulerian functions of a group, Quart. J. Math., no. 7 (1936), 134-151. | Zbl 0014.10402

[7] Hardy, G. H. - Wright, E. M., An introduction to the theory of numbers, fifth ed., The Clarendon Press Oxford University Press, New York, 1979. | MR 568909 | Zbl 0423.10001

[8] Mann, Avinoam, Positively finitely generated groups, Forum Math.8, no. 4 (1996), 429-459. | MR 1393323 | Zbl 0852.20019

[9] Ribenboim, P., The New Book of Prime Number Records, Springer-Verlag, New York, 1989, 23-24. | MR 1016815

[10] Shareshian, John, On the probabilistic zeta function for finite groups, J. Algebra210, no. 2 (1998), 703-707. | MR 1662324 | Zbl 1013.11058