Given a Gelfand pair of Lie groups, we identify the spectrum with a suitable subset of and we prove the equivalence between Gelfand topology and euclidean topology.
Data una coppia di Gelfand di gruppi di Lie, identifichiamo lo spettro con un opportuno sottoinsieme di e dimostriamo l'equivalenza tra la topologia di Gelfand e la topologia euclidea.
@article{BUMI_2007_8_10B_3_569_0, author = {Fabio Ferrari Ruffino}, title = {The Topology of the Spectrum for Gelfand Pairs on Lie Groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {569-579}, zbl = {1182.43012 1177.22004}, mrnumber = {2351529}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_569_0} }
Ferrari Ruffino, Fabio. The Topology of the Spectrum for Gelfand Pairs on Lie Groups. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 569-579. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_569_0/
[1] | MR 697382
, Analyse fonctionelle, Masson, 1992.[2]
- - , Lezioni di topologia generale, Feltrinelli Milano, 1977.[3] | MR 193606
, Topology, Boston: Allyn and Bacon Inc., 1966.[4] Analyse harmonique sur es paires de Guelfand et les espaces hyperboliques, in Analyse Harmonique, C.I.M.P.A., 1982. | MR 748870
,[5] | MR 737190 | Zbl 0562.35001
- , Elliptic partial differential equations of second order, Springer-Verlag, 1983.[7] | MR 145455 | Zbl 0111.18101
, Differential geometry and symmetric spaces, Academic Press, 1962.[7] | MR 754767 | Zbl 0543.58001
, Groups and geometric analysis, Academic Press, 1984.[8] | MR 152834
, Fourier analysis on groups, Interscience publishers, 1977. , Real and complex analysis, McGraw-Hill, 1987.