Let be arbitrary. Suppose that is a sufficiently large positive number. We prove that the number of integers , satisfying some natural congruence conditions, which cannot be written as the sum of three squares of primes is , provided that .
Siano arbitrari. Supponiamo che sia un numero positivo sufficientemente grande. Proviamo che il numero di interi appartenenti ad , e soddisfacenti alcune condizioni di congruenza naturali, che non si possono scrivere come somma di tre quadrati di primi è con .
@article{BUMI_2007_8_10B_3_549_0, author = {Hiroshi Mikawa and Temenoujka Peneva}, title = {Sums of Three Prime Squares}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {549-558}, zbl = {1177.11086}, mrnumber = {2351527}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_549_0} }
Mikawa, Hiroshi; Peneva, Temenoujka. Sums of Three Prime Squares. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 549-558. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_549_0/
[1] On a sum of three prime squares, J. Number Theory, 85 (2000), 336-359. | MR 1802721 | Zbl 0961.11034
- - ,[2] A large sieve density estimate near , Invent. Math., 11 (1970), 329-339. | MR 279049 | Zbl 0219.10048
,[3] Some results in the additive prime number theory, Quart. J. Math. Oxford, 9 (1938), 68-80. | MR 3363459 | Zbl 0018.29404
,[4] Large values of Dirichlet polynomials III, Acta Arith., 26 (1975), 435- 444. | MR 379395 | Zbl 0268.10026
,[5] On generalized quadratic equations in three prime variables, Monatsh. Math., 115 (1993), 133-169. | MR 1223248 | Zbl 0779.11045
- ,[6] Distribution of integers that are sums of three squares of primes, Acta Arith., 98 (2001), 207-228. | MR 1829623 | Zbl 0972.11099
- ,[7] On a theorem of Hua, Arch. Math. (Basel), 69 (1997), 375-390. | MR 1473092 | Zbl 0898.11038
- ,[8] On the sum of three squares of primes, In: Analytic Number Theory (Kyoto, 1996), 253-264, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. | MR 1694995 | Zbl 0906.11052
,[9] Hardy-Littlewood numbers in short intervals, J. Number Theory, 54 (1995), 297-308. | MR 1354054 | Zbl 0851.11056
- ,[10] | MR 516660
, Primzahlverteilung, Springer-Verlag, Berlin-New York, 1978.[11] Zur Darstellung von Zahlen durch Summen von Primzahlpotenzen, II, J. Reine Angew. Math., 206 (1961), 78-112. | MR 126431
,