In this paper, we show a necessary and sufficient condition for a real Banach space to have an infinite dimensional subspace which is hilbertizable and complemented using techniques related to -summand vectors.
In questo articolo, mostriamo una condizione necessaria e sufficiente affinché uno spazio di Banach reale abbia un sottospazio infinito dimensionale il quale sia hilbertizzabile e complementato, usando tecniche relazionate con vettori -summand.
@article{BUMI_2007_8_10B_3_1143_0, author = {Antonio Aizpuru and Francisco J. Garc\'\i a-Pacheco}, title = {$L^2$-Summand Vectors and Complemented Hilbertizable Subspaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {1143-1148}, zbl = {1200.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_1143_0} }
Aizpuru, Antonio; García-Pacheco, Francisco J. $L^2$-Summand Vectors and Complemented Hilbertizable Subspaces. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1143-1148. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_1143_0/
[1] -summand vectors in Banach spaces, Proc. Amer. Math. Soc., 134, 7 (2006), 2109-2115. | MR 2215781
- ,[2] 613, Berlin-Heidelberg-New York, Springer-Verlag, 1977. | MR 626051 | Zbl 0362.46020
et al., -structure in real Banach spaces, Lecture Notes in Mathematics[3] -struktur in Banachräumen, Studia Math., 55 (1976), 71-85. | MR 402466
,[4] Transitivity of the norm on Banach spaces, Extracta Math., 17, 1 (2002) 1-58. | MR 1914238 | Zbl 1006.46007
- ,[5] A characterization of inner product spaces, Math. Japonica, 23, 4 (1978), 371-373. | MR 524986 | Zbl 0395.46018
- ,