A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension
Raguž, Andrija
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 1125-1142 / Harvested from Biblioteca Digitale Italiana di Matematica

In this note we consider the Ginzburg-Landau functional Iaϵ(v)=01(ϵ2v′′2(s)+W(v(s))+a(ϵ-βs(v2(s))ds where β>0 and a is 1-periodic. We determine how (rescaled) minimal asymptotic energy associated to Iaϵ depends on parameter β>0 as ϵø0. In particular, our analysis shows that minimizers of Iaϵ are nearly ϵ1/3-periodic.

In questa nota consideriamo il funzionale di Ginzburg-Landau Iaϵ(v)=01(ϵ2v′′2(s)+W(v(s))+a(ϵ-βs(v2(s))ds ove β>0 e a è 1-periodica. Mostreremo come la minima energia asintotica (ridimensionata) associata a Iaϵ dipenda dal parametro β>0 per ϵ0. In particolare, la nostra analisi mostra che i minimizzatori di Iaϵ sono quasi ϵ1/3-periodici.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_1125_0,
     author = {Andrija Ragu\v z},
     title = {A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {1125-1142},
     zbl = {1189.49019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_1125_0}
}
Raguž, Andrija. A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1125-1142. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_1125_0/

[1] Alberti, G. - Müller, S., A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54 (2001), 761-825. | MR 1823420 | Zbl 1021.49012

[2] Ball, J. M., A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions (M. Rascle and al., eds.), Lecture Notes in Physics, 344, Springer, Berlin 1989. | MR 1036070

[3] Choksi, R., Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci., 11 (2001), 223-236. | MR 1852942 | Zbl 1023.82015

[4] Dalmaso, G., An Introduction to Γ-convergence, Progress in Nonlinear Differential Equations, Birkhauser, Boston1993. | MR 1201152

[5] Kohn, R. V. - Müller, S., Branching of twins near an austensite-twinned-martensite interface, Philosophical Magazine A, 66 (1992), 697-715.

[6] Modica, L. - Mortola, S., Un esempio di Γ-convergenca, Boll. Un. Mat. Ital. (5), 14-B (1977), 285-299. | MR 445362

[7] Müller, S., Singular perturbations as a selection criterion for minimizing sequences, Calc. Var., 1 (1993), 169-204. | MR 1261722

[8] Ohta, T. - Kawasaki, K., Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.

[9] Raguz, A., Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptotic Anal., 41 (3,4) (2005), 331-361. | MR 2128001 | Zbl 1095.49013

[10] Young, L. C., Lectures on the calculus of variations and optimal control theory, Chelsea, 1980. | MR 259704