In this note we consider the Ginzburg-Landau functional where and a is 1-periodic. We determine how (rescaled) minimal asymptotic energy associated to depends on parameter as . In particular, our analysis shows that minimizers of are nearly -periodic.
In questa nota consideriamo il funzionale di Ginzburg-Landau ove e è 1-periodica. Mostreremo come la minima energia asintotica (ridimensionata) associata a dipenda dal parametro per . In particolare, la nostra analisi mostra che i minimizzatori di sono quasi -periodici.
@article{BUMI_2007_8_10B_3_1125_0, author = {Andrija Ragu\v z}, title = {A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {1125-1142}, zbl = {1189.49019}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_1125_0} }
Raguž, Andrija. A Note on Calculation of Asymptotic Energy for a Functional of Ginzburg-Landau Type with Externally Imposed Lower-Order Oscillatory Term in One Dimension. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1125-1142. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_1125_0/
[1] A new approach to variational problems with multiple scales, Comm. Pure Appl. Math., 54 (2001), 761-825. | MR 1823420 | Zbl 1021.49012
- ,[2] A version of the fundamental theorem for Young measures, in PDE's and Continuum Models of Phase Transitions ( and al., eds.), Lecture Notes in Physics, 344, Springer, Berlin 1989. | MR 1036070
,[3] Scaling laws in microphase separation of diblock copolymers, J. Nonlinear Sci., 11 (2001), 223-236. | MR 1852942 | Zbl 1023.82015
,[4] | MR 1201152
, An Introduction to -convergence, Progress in Nonlinear Differential Equations, Birkhauser, Boston1993.[5] Branching of twins near an austensite-twinned-martensite interface, Philosophical Magazine A, 66 (1992), 697-715.
- ,[6] Un esempio di -convergenca, Boll. Un. Mat. Ital. (5), 14-B (1977), 285-299. | MR 445362
- ,[7] Singular perturbations as a selection criterion for minimizing sequences, Calc. Var., 1 (1993), 169-204. | MR 1261722
,[8] Equilibrium morphology of block copolymer melts, Macromolecules, 19 (1986), 2621-2632.
- ,[9] Relaxation of Ginzburg-Landau functional with 1-Lipschitz penalizing term in one dimension by Young measures on micropatterns, Asymptotic Anal., 41 (3,4) (2005), 331-361. | MR 2128001 | Zbl 1095.49013
,[10] | MR 259704
, Lectures on the calculus of variations and optimal control theory, Chelsea, 1980.