We provide a duality theory and existence results for a operator equation where is not necessarily a monotone operator. We use the abstract version of the so called dual variational method. The solution is obtained as a limit of a minimizng sequence whose existence and convergence is proved.
Forniamo una teoria duale e risultati di esistenza per un'equazione operatore dove non è necessariamente un operatore monotono. Usiamo la versione astratta del cosiddetto metodo variazionale duale. La soluzione è ottenuta come un limite di una sequenza minimizzante la cui esistenza e convergenza è provata.
@article{BUMI_2007_8_10B_3_1089_0, author = {Marek Galewski}, title = {On the Existence of Solutions for Abstract Nonlinear Operator Equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {1089-1100}, zbl = {1236.47063}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_1089_0} }
Galewski, Marek. On the Existence of Solutions for Abstract Nonlinear Operator Equations. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1089-1100. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_1089_0/
[1] Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363. | MR 1851857 | Zbl 0994.47054
- ,[2] | MR 463994 | Zbl 0322.90046
- , Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976.[3] | MR 1019559
, Lectures on Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research, Springer, Berlin, 1989.[4] | MR 636412
- - , Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974.[5] The existence of solutions for a semilinear abstract Dirichlet problem, Georgian Math. J., 11 (2004), no. 2, 243-254. | MR 2084987 | Zbl 1083.47048
,[6] | MR 203473 | Zbl 0435.47001
, Perturbation Theory for Linear Operators, Springer Verlag, 1980.[7] | MR 906453
, Problems de Dirichlet variationnels non lineaires, Les Presses de l'Universite de Montreal, 1987.[8] | Zbl 0676.58017
- , Critical Point Theory, Springer-Verlag, New York, 1989.[9] A New Variational Principle and Duality for Periodic Solutions of Hamilton's Equations, J. Differential Equations, vol. 97, No. 1 (1992), 174-188. | MR 1161317 | Zbl 0759.34039
,[10] On the new variational principles and duality for periodic solutions of Lagrange equations with superlinear nonlinearities, J. Math. Analysis App., 264 (2001), 168-181. | MR 1868335 | Zbl 0998.34033
- , , Fixed Point Theorems, Cambridge University Press, 1974.