On the Existence of Solutions for Abstract Nonlinear Operator Equations
Galewski, Marek
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 1089-1100 / Harvested from Biblioteca Digitale Italiana di Matematica

We provide a duality theory and existence results for a operator equation T(x)=N(x) where T is not necessarily a monotone operator. We use the abstract version of the so called dual variational method. The solution is obtained as a limit of a minimizng sequence whose existence and convergence is proved.

Forniamo una teoria duale e risultati di esistenza per un'equazione operatore T(x)=N(x) dove T non è necessariamente un operatore monotono. Usiamo la versione astratta del cosiddetto metodo variazionale duale. La soluzione è ottenuta come un limite di una sequenza minimizzante la cui esistenza e convergenza è provata.

Publié le : 2007-10-01
@article{BUMI_2007_8_10B_3_1089_0,
     author = {Marek Galewski},
     title = {On the Existence of Solutions for Abstract Nonlinear Operator Equations},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {1089-1100},
     zbl = {1236.47063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_3_1089_0}
}
Galewski, Marek. On the Existence of Solutions for Abstract Nonlinear Operator Equations. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1089-1100. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_3_1089_0/

[1] Dinca, G. - Jebelean, P., Some existence results for a class of nonlinear equations involving a duality mapping, Nonlinear Analysis, 46 (2001), 347-363. | MR 1851857 | Zbl 0994.47054

[2] Ekeland, I. - Temam, R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. | MR 463994 | Zbl 0322.90046

[3] De Figuereido, D. G., Lectures on Ekeland variational principle with applications and detours, Tata Institute of Fundamental Research, Springer, Berlin, 1989. | MR 1019559

[4] Gajewski, H. - Groeger, K. - Zacharias, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. | MR 636412

[5] Galewski, M., The existence of solutions for a semilinear abstract Dirichlet problem, Georgian Math. J., 11 (2004), no. 2, 243-254. | MR 2084987 | Zbl 1083.47048

[6] Kato, T., Perturbation Theory for Linear Operators, Springer Verlag, 1980. | MR 203473 | Zbl 0435.47001

[7] Mawhin, J., Problems de Dirichlet variationnels non lineaires, Les Presses de l'Universite de Montreal, 1987. | MR 906453

[8] Mawhin, J. - Willem, M., Critical Point Theory, Springer-Verlag, New York, 1989. | Zbl 0676.58017

[9] Nowakowski, A., A New Variational Principle and Duality for Periodic Solutions of Hamilton's Equations, J. Differential Equations, vol. 97, No. 1 (1992), 174-188. | MR 1161317 | Zbl 0759.34039

[10] Nowakowski, A. - Rogowski, A., On the new variational principles and duality for periodic solutions of Lagrange equations with superlinear nonlinearities, J. Math. Analysis App., 264 (2001), 168-181. | MR 1868335 | Zbl 0998.34033

[11] Smart, D. R., Fixed Point Theorems, Cambridge University Press, 1974. | MR 467717 | Zbl 0297.47042