We use notations: and e . We consider groups generated by , satisfying relations or , . We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if is a prime then the group is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation are finite.
Scriviamo e e . Nel presente mostriamo certe proprietà ed esempio dei gruppi con i generatori , tali che o , .
@article{BUMI_2007_8_10B_2_485_0, author = {Piotr S\l anina and Witold Tomaszewski}, title = {Groups Generated by (near) Mutually Engel Periodic Pairs}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {485-497}, zbl = {1167.20018}, mrnumber = {2339456}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_485_0} }
Słanina, Piotr; Tomaszewski, Witold. Groups Generated by (near) Mutually Engel Periodic Pairs. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 485-497. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_485_0/
[1] Generators and Relations for Discrete Groups, Berlin-Heildeberg-New York1980. | MR 562913 | Zbl 0422.20001
, ,[2] Groups generated by two mutually Engel Periodic elements, Bolletino U.M.I., (8) 3-B (2000), 461-470. | MR 1769996 | Zbl 0982.20016
,[3] | MR 551207 | Zbl 0549.20001
, , Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979.[4] | MR 422434
, , , Combinatorial Group Theory, Dover Publications, Inc. New York1976. , An Introduction to the Theory of Groups, Springer-Verlag, Inc. New York1995. , The Theory of Groups, Dover Publications, Inc., Mineola, New York1999.