Groups Generated by (near) Mutually Engel Periodic Pairs
Słanina, Piotr ; Tomaszewski, Witold
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 485-497 / Harvested from Biblioteca Digitale Italiana di Matematica

We use notations: [x,y]=[x,1y] and [x,k+1y] e [[x,ky],y]. We consider groups generated by x, y satisfying relations x=[x,ny],y=[y,nx] or [x,y]=[x,ny], [y,x]=[y,nx]. We call groups of the first type mep-groups and of the second type nmep-groups. We show many properties and examples of mep- and nmep-groups. We prove that if p is a prime then the group Sl2(p) is a nmep-group. We give the necessary and sufficient conditions for metacyclic group to be a nmep-group and we show that nmep-groups with presentation x,y[x,y]=[x,2y],[y,x]=[y,2x],xn,ym are finite.

Scriviamo [x,y]=[x,1y] e [x,k+1y] e [[x,ky],y]. Nel presente mostriamo certe proprietà ed esempio dei gruppi con i generatori x, y tali che x=[x,ny],y=[y,nx] o [x,y]=[x,ny], [y,x]=[y,nx].

Publié le : 2007-06-01
@article{BUMI_2007_8_10B_2_485_0,
     author = {Piotr S\l anina and Witold Tomaszewski},
     title = {Groups Generated by (near) Mutually Engel Periodic Pairs},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {485-497},
     zbl = {1167.20018},
     mrnumber = {2339456},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_485_0}
}
Słanina, Piotr; Tomaszewski, Witold. Groups Generated by (near) Mutually Engel Periodic Pairs. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 485-497. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_485_0/

[1] Coxeter, H.S.M., Moser, W.O.J., Generators and Relations for Discrete Groups, Berlin-Heildeberg-New York1980. | MR 562913 | Zbl 0422.20001

[2] Heineken, H., Groups generated by two mutually Engel Periodic elements, Bolletino U.M.I., (8) 3-B (2000), 461-470. | MR 1769996 | Zbl 0982.20016

[3] Kargapolov, M.I., Merzljakov, Ju. I., Fundamentals of the Theory of Groups, Springer-Verlag, New York, 1979. | MR 551207 | Zbl 0549.20001

[4] Magnus, W., Karrass, A., Solitar, D., Combinatorial Group Theory, Dover Publications, Inc. New York1976. | MR 422434

[5] Rotman, J.J., An Introduction to the Theory of Groups, Springer-Verlag, Inc. New York1995. | MR 1307623 | Zbl 0810.20001

[6] Zassenhaus, H.J., The Theory of Groups, Dover Publications, Inc., Mineola, New York1999. | MR 1644892 | Zbl 0943.20002