In this paper the relations of mappings and families of subsets are investigated in Ponomarev-systems, and the following results are obtained. (1) is a sequence-covering (resp. 1-sequence-covering) mapping iff is a csf -network (resp. snf -network) of for a Ponomarev-system ; (2) is a sequence-covering (resp. 1-sequence-covering) mapping iff every is a cs-cover (resp. wsn-cover) of for a Ponomarev-system . As applications of these results, some relations between sequence-covering mappings and 1-sequence-covering mappings are discussed, and a question posed by S. Lin is answered.
In questo lavoro vengono studiate le relazioni fra mappe e famiglie di sottoinsiemi nei sistemi di Ponomarev, e si ottengono i seguenti risultati. (1) è una "sequence-covering'" (risp. una "1-sequence-covering") mappa se e solo se è una csf rete (risp. una snf rete) di per un sistema di Ponomarev ; (2) è una "sequence-covering" (risp. una "1-sequence-covering") mappa se e solo se ogni è un cs ricoprimento (risp. un wsn ricoprimento) di per un sistema di Ponomarev . Come applicazione di questi risultati vengono discusse alcune relazioni fra "sequence-covering" mappe e "1-sequence-covering" mappe, e si fornisce la risposta a una domanda posta da S. Lin.
@article{BUMI_2007_8_10B_2_455_0, author = {Ying Ge and Lin Shou}, title = {On Ponomarev-Systems}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {455-467}, zbl = {1143.54003}, mrnumber = {2339454}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_455_0} }
Ge, Ying; Shou, Lin. On Ponomarev-Systems. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 455-467. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_455_0/
[1] Spaces with countable sn-networks, Comment Math. Univ. Carolinae, 45 (2004), 169-176. | MR 2076868 | Zbl 1098.54025
,[2] Mappings in Ponomarev-Systems, Topology Proc., 29 (2005), 141-153. | MR 2182923 | Zbl 1085.54018
,[3] Spaces determined by point-countable covers, Pacific J. Math., 113 (1984), 303-332. | MR 749538 | Zbl 0561.54016
- - ,[4] A characterization of -spaces, General Topology Appl., 1 (1971), 105-110. | MR 288726 | Zbl 0216.19103
,[5] A note on the Arens' spaces and sequential fan, Topology Appl., 81 (1997), 185-196. | MR 1485766 | Zbl 0885.54019
,[6] 2002 (in Chinese). | MR 1939779 | Zbl 1004.54001
, Point-Countable Covers and Sequence-Covering Mappings, Beijing: Chinese Science Press,[7] A note on sequence-covering mappings, Acta Math. Hungar., 107 (2005), 187- 191. | MR 2148582 | Zbl 1081.54025
,[8] Sequence-covering maps of metric spaces, Topology Appl., 109 (2001), 301-314. | MR 1807392 | Zbl 0966.54012
- ,[9] Notes on cfp-covers, Comment Math. Univ. Carolinae, 44 (2003), 295- 306. | MR 2026164 | Zbl 1100.54021
- ,[10] -spaces, J. Math. Mech., 15 (1966), 983-1002. | MR 206907
,[11] Axiom of countability and continuous mappings, Bull. Pol. Acad. Math., 8 (1960), 127-133. | MR 116314 | Zbl 0095.16301
,[12] Sequence-covering and countably bi-quotient mappings, General Topology Appl., 1 (1971), 143-154. | MR 288737 | Zbl 0218.54016
,[13] Around quotient compact images of metric spaces, and symmetric spaces, Houston J. Math., 32 (2006), 99-117. | MR 2202355 | Zbl 1102.54034
- ,[14] On strong sequence-covering compact mapppings, Northeastem Math J., 14 (1998), 341-344. | MR 1685267 | Zbl 0927.54030
,