We construct, here, transverse homology functors, and we prove their invariance with respect to a suitable definition of homotopy.
In questa nota vengono costruiti i funtori omologia trasversa, associati ciascuno ad una perversità, e viene provata la loro invarianza rispetto ad una opportuna definizione di omotopia.
@article{BUMI_2007_8_10B_2_433_0, author = {Sara Dragotti and Gaetano Magro and Lucio Parlato}, title = {Homotopy Invariance of Transverse Homology Functors}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {433-439}, zbl = {1178.55006}, mrnumber = {2339451}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_433_0} }
Dragotti, Sara; Magro, Gaetano; Parlato, Lucio. Homotopy Invariance of Transverse Homology Functors. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 433-439. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_433_0/
[1] Manifold phenomena in the theory of polyhedra, Trans. Amer. Math. Soc., 143 (1969), 413-473. | MR 253329 | Zbl 0195.53702
,[2] | MR 413113 | Zbl 0315.55002
- - , A geometric approach in homology theory, Cambridge University Press - London - New York, 1976.[3] Transverse homology groups, to appear on the Bollettino UMI. | MR 2204901 | Zbl 1150.55001
- - ,[4] Intersection homology theory, Topology, Vol. 19 (1979), 135-162. | MR 572580 | Zbl 0448.55004
- ,[5] Stratified general position, Algebraic and Geometric Topology, Springer Lecture Notes in Mathematics, n. 664, Springer-Verlag, New York (1978), 142-146. | MR 518413
,[6] 69, Springer-Verlag, Berlin and New York, 1972. | Zbl 0254.57010
- , Introduction to PL topology, Ergeb. Mat. Band.