Nello spazio proiettivo , consideriamo il numero dei sottospazi -dimensionali, -secanti una curva C, di grado e genere . Nel 1889, una formula per è stata data da Castelnuovo [2]; in [1] si trova una dimostrazione moderna. In questo lavoro, mi propongo di costruire la funzione generatrice della serie , senza usare i risultati di Castelnuovo.
Let be the number of -dimensional subspaces of which are -secant to a curve (of degree and genus ). Castelnuovo (1889) gave a formula for (see [2]); one has a modern proof in the monograph [1]. Here we give explicitly the generating function of the series , without using Castelnuovo's results.
@article{BUMI_2007_8_10B_2_381_0, author = {Patrick Le Barz}, title = {Sur Une Formule de Castelnuovo Pour Les Espaces Multis\'ecants}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {381-387}, zbl = {1139.14042}, mrnumber = {2339448}, language = {fr}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_381_0} }
Le Barz, Patrick. Sur Une Formule de Castelnuovo Pour Les Espaces Multisécants. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 381-387. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_381_0/
[1] I, Springer-Verlag (1985). | MR 770932 | Zbl 0559.14017
- - - , Geometry of Algebraic Curves, vol.[2] Una applicazione della Geometria Enumerativa alle curve algebriche, Rendiconti Palermo III (1889), 27-37. | MR 3622298
,[3] Instantons in Yang-Mills theory, The interface of Mathematics and Particle Physics, Clarendon Press, Oxford (1990), 59-75. | MR 1103130
,[4] 35, Cambridge University Press (1997). | MR 1464693
- YOUNG TABLEAUX, London Math. Soc. Student Texts[5] | MR 463157
, Algebraic Geometry, Graduate Texts in Mathematics, Springer-Verlag (1977).[6] Formules pour les espaces multisécants aux courbes algébriques, C. R. Ac. Sc. Paris, Ser. I, 340 (2005), 743-746. | MR 2141062 | Zbl 1073.14069
,[7] Formules pour les trisécantes des surfaces algébriques, L'Enseigne- ment Mathématique, 33 (1987), 1-66. | MR 896383
,[8] Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Inv. Math., 136 (1999), 157-207. | MR 1681097 | Zbl 0919.14001
,[9] | MR 34048 | Zbl 0041.27903
, , Introduction to Algebraic Geometry, Clarendon Press, Oxford (1949).[10] Top Segre class of a standard vector bundle on the Hilbert scheme of a surface S, Algebraic geometry and its applications Yaroslavl', Aspects of Maths. vol. E25, Vieweg-Verlag (1994), 205-226. | MR 1282030 | Zbl 0819.14004
- ,[11] Justification de la méthode fonctionnelle pour les courbes gauches, Acta Mat., 172 (1994), 257-297. | MR 1278112 | Zbl 0842.14039
,