In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight , which gives the degeneration, belongs to the Muckenoupt class .
In questa nota si studia un problema di esistenza e unicità di soluzioni di una disuguaglianza variazionale associata al seguente operatore degenere . I coefficienti dei termini di ordine inferiore e del termine noto di (*) appartengono ad una generalizzazione degenere del classico spazio di Stummel-Kato. Il peso , che fornisce la degenerazione, appartiene alla classe di Muckenoupt.
@article{BUMI_2007_8_10B_2_341_0, author = {Carmela Vitanza and Pietro Zamboni}, title = {A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {341-356}, zbl = {1178.49012}, mrnumber = {2339445}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_341_0} }
Vitanza, Carmela; Zamboni, Pietro. A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 341-356. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_341_0/
[1] Brownian motion and Harnack inequality for Schrodinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. | MR 644024 | Zbl 0459.60069
- ,[2] Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. | MR 1354887 | Zbl 0838.35022
,[3] Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. | MR 857933 | Zbl 0626.35022
- - ,[4] Una disequazione variazionale associata a un operatore ellittico con degenerazione di tipo , Le Matematiche, 37 (1982), 239-250
- ,[5] The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182. | MR 688024 | Zbl 0488.35034
- - ,[6] The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E., 7 (1982), 77-116. | MR 643158 | Zbl 0498.35042
- - ,[7] | MR 807149
- , Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985).[8] Harnack's inequality for degenerate Schrödinger operators, Trans. A.M.S., 312 (1989), 403-419. | MR 948190 | Zbl 0685.35020
,[9] | MR 244627
- , Linear and quasilinear elliptic equations (Accad. Press 1968).[10] Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. | MR 216344
- ,[11] Una diseguaglianza variazionale associata a un operatore ellittico che puo degenerare e con condizioni al contorno di tipo misto, Rend. Sem. Mat. Padova, 54 (1975), 107-121. | MR 481461 | Zbl 0354.35030
,[12] Weigthed norm inequalities for the Hardy maximal functions, Trans. A.M.S., 165 (1972), 207-226. | MR 293384
,[13] Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pure Appl., 80 (1968), 1-122. | MR 249828 | Zbl 0185.19201
- ,[14] An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), 129-152. | MR 1030712 | Zbl 0697.35017
,[15] Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), 198-258. | MR 192177 | Zbl 0151.15401
,[16] Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger perators, Le Matematiche, 52 (1997), 393-409. | MR 1626460
- ,[17] The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. | MR 1777522 | Zbl 0954.35063
,[18] Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. of Differential equations, 182 (2002), 121-140. | MR 1912072 | Zbl 1014.35036
,