A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients
Vitanza, Carmela ; Zamboni, Pietro
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 341-356 / Harvested from Biblioteca Digitale Italiana di Matematica

In this note we obtain the existence and the uniqueness of the solution of a variational inequality associated to the degenerate operator Lu=-i,j=1n(aij(x)uxi+dju)xj+i=1nbiuxi+cu assuming the coefficients of the lower terms and the known term belonging to a suitable degenerate Stummel-Kato class. The weight w, which gives the degeneration, belongs to the Muckenoupt class A2.

In questa nota si studia un problema di esistenza e unicità di soluzioni di una disuguaglianza variazionale associata al seguente operatore degenere Lu=-i,j=1n(aij(x)uxi+dju)xj+i=1nbiuxi+cu. I coefficienti dei termini di ordine inferiore e del termine noto di (*) appartengono ad una generalizzazione degenere del classico spazio di Stummel-Kato. Il peso w, che fornisce la degenerazione, appartiene alla classe A2 di Muckenoupt.

Publié le : 2007-06-01
@article{BUMI_2007_8_10B_2_341_0,
     author = {Carmela Vitanza and Pietro Zamboni},
     title = {A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {341-356},
     zbl = {1178.49012},
     mrnumber = {2339445},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_341_0}
}
Vitanza, Carmela; Zamboni, Pietro. A Variational Inequality for a Degenerate Elliptic Operator Under Minimal Assumptions on the Coefficients. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 341-356. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_341_0/

[1] Aizenman, M. - Simon, B., Brownian motion and Harnack inequality for Schrodinger operators, Comm. Pure Appl. Math., 35 (1982), 209-273. | MR 644024 | Zbl 0459.60069

[2] Chiarenza, F., Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. | MR 1354887 | Zbl 0838.35022

[3] Chiarenza, F. - Fabes, E. - Garofalo, N., Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. | MR 857933 | Zbl 0626.35022

[4] Chiarenza, F. - Frasca, M., Una disequazione variazionale associata a un operatore ellittico con degenerazione di tipo A2, Le Matematiche, 37 (1982), 239-250

[5] Fabes, E. - Jerison, D. - Kenig, C., The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32 (1982), 151-182. | MR 688024 | Zbl 0488.35034

[6] Fabes, E. - Kenig, C. - Serapioni, R., The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E., 7 (1982), 77-116. | MR 643158 | Zbl 0498.35042

[7] Garcia Cuerva, J. - Rubio De Francia, J. L., Weighted norm inequalities and related topics (North-Holland, Amsterdam, 1985). | MR 807149

[8] Gutierrez, C., Harnack's inequality for degenerate Schrödinger operators, Trans. A.M.S., 312 (1989), 403-419. | MR 948190 | Zbl 0685.35020

[9] Ladyzhenskaya, O. - Ural'Tseva, N., Linear and quasilinear elliptic equations (Accad. Press 1968). | MR 244627

[10] Lions, J. L. - Stampacchia, G., Variational inequalities, Comm. Pure Appl. Math., 20 (1967), 493-519. | MR 216344

[11] Marina, M. E., Una diseguaglianza variazionale associata a un operatore ellittico che puo degenerare e con condizioni al contorno di tipo misto, Rend. Sem. Mat. Padova, 54 (1975), 107-121. | MR 481461 | Zbl 0354.35030

[12] Muckenoupt, B., Weigthed norm inequalities for the Hardy maximal functions, Trans. A.M.S., 165 (1972), 207-226. | MR 293384

[13] Murthy, K.V. - Stampacchia, G., Boundary value problems for some degenerate elliptic operators, Ann. Mat. Pure Appl., 80 (1968), 1-122. | MR 249828 | Zbl 0185.19201

[14] Simader, C., An elementary proof of Harnack's inequality for Schrödinger operators and related topics, Math. Z., 203 (1990), 129-152. | MR 1030712 | Zbl 0697.35017

[15] Stampacchia, G., Le probleme de Dirichlet pour les equations elliptiques du second ordre a coefficients discontinus, Ann. Inst. Fourier Grenoble, 15 (1965), 198-258. | MR 192177 | Zbl 0151.15401

[16] Vitanza, C. - Zamboni, P., Necessary and sufficient conditions for Hölder continuity of solutions of degenerate Schrödinger perators, Le Matematiche, 52 (1997), 393-409. | MR 1626460

[17] Zamboni, P., The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. | MR 1777522 | Zbl 0954.35063

[18] Zamboni, P., Hölder continuity for solutions of linear degenerate elliptic equations under minimal assumptions, J. of Differential equations, 182 (2002), 121-140. | MR 1912072 | Zbl 1014.35036