Interior C1,α-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions
Wolf, Jorg
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 317-340 / Harvested from Biblioteca Digitale Italiana di Matematica

In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case 1<q<2.

Si dimostra l'hölderianità di equazioni degenerate, che descrivono il moto di un fluido incomprimibile non- newtoniano in due dimensioni, sotto condizioni usuali di monotonia e di andamento all'infinito di ordine q-1 (1<q<2).

Publié le : 2007-06-01
@article{BUMI_2007_8_10B_2_317_0,
     author = {Jorg Wolf},
     title = {Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {317-340},
     zbl = {1140.76007},
     mrnumber = {2339444},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_317_0}
}
Wolf, Jorg. Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 317-340. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_317_0/

[1] ADAMS, A, R.., Sobolev spaces. Academic Press, Boston 1978. | MR 450957

[2] Astarita, G. - Marrucci, G. Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. | Zbl 0316.73001

[3] Batchelor, G. K., An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge1967. | MR 1744638 | Zbl 0152.44402

[4] Bird, R. B. - Armstrong, R. C., Hassager, O.: Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York 1987. | MR 830199

[5] Galdi, G. P., An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York1994. | MR 1284205 | Zbl 0949.35004

[6] Giaquinta, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). | MR 717034 | Zbl 0516.49003

[7] Giaquinta, M. - Modica, G., Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math. 28 (1979), 109-158. | MR 535699 | Zbl 0411.35018

[8] Gehring, F. W., Lpintegrability of the partial derivatives of a quasi conformal mapping. Acta. Math.130 (1973), 265- 277. | MR 402038 | Zbl 0258.30021

[9] Kaplický, P. - Málek, J. - Stará, J., C1,α-solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI) 259 (1999), 89-121. | MR 1754359 | Zbl 0978.35046

[10] Lamb, H., Hydrodynamics. 6th ed., Cambridge Univ. Press1945. | MR 1317348

[11] Naumann, J., On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. | MR 964511 | Zbl 0664.35033

[12] Naumann, J. - Wolf, J., On the interior regularity of weak solutions of degenerate elliptic system (the case 1<p<2). Rend. Sem. Mat. Univ. Padova 88 (1992), 55- 81. | MR 1209116 | Zbl 0818.35024

[13] Naumann, J. - Wolf, J., Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. | MR 2177130 | Zbl 1070.35023

[14] Wilkinson, W. L., Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York1960. | MR 110392 | Zbl 0124.41802