In the present work we prove the interior Hölder continuity of the gradient matrix of any weak solution of equations, which describes the motion of non-Newtonian fluid in two dimensions, restricting ourself to the shear thinning case .
Si dimostra l'hölderianità di equazioni degenerate, che descrivono il moto di un fluido incomprimibile non- newtoniano in due dimensioni, sotto condizioni usuali di monotonia e di andamento all'infinito di ordine ().
@article{BUMI_2007_8_10B_2_317_0,
author = {Jorg Wolf},
title = {Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {10-A},
year = {2007},
pages = {317-340},
zbl = {1140.76007},
mrnumber = {2339444},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_317_0}
}
Wolf, Jorg. Interior $C^{1,\alpha}$-Regularity of Weak Solutions to the Equations of Stationary Motions of Certain Non-Newtonian Fluids in Two Dimensions. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 317-340. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_317_0/
[1] ADAMS, ., Sobolev spaces. Academic Press, Boston 1978. | MR 450957
[2] - Principles of non-Newtonian fluid mechanics. Mc Graw-Hill, London, New York 1974. | Zbl 0316.73001
[3] , An introduction to fluid mechanics. Cambridge Univ. Press, Cambridge1967. | MR 1744638 | Zbl 0152.44402
[4] - , : Dynamics of polymer liquids. Vol. 1: Fluid mechanics. 2nd ed., J. Wiley and Sons, New York 1987. | MR 830199
[5] , An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems. Springer-Verlag, New York1994. | MR 1284205 | Zbl 0949.35004
[6] , Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals Math. Studies, no. 105, Princeton Univ. Press, Princeton, N.J. (1983). | MR 717034 | Zbl 0516.49003
[7] - , Almost-everywhere regularity results for solutions of nonlinear elliptic systems. Manuscripta Math. 28 (1979), 109-158. | MR 535699 | Zbl 0411.35018
[8] , integrability of the partial derivatives of a quasi conformal mapping. Acta. Math.130 (1973), 265- 277. | MR 402038 | Zbl 0258.30021
[9] - - , -solutions to a class of nonlinear fluids in two dimensionsÀstationary Dirichlet problem. Zap. Nauchn. Sem. St. Petersburg Odtel. Mat. Inst. Steklov (POMI) 259 (1999), 89-121. | MR 1754359 | Zbl 0978.35046
[10] , Hydrodynamics. 6th ed., Cambridge Univ. Press1945. | MR 1317348
[11] , On the differentiability of weak solutions of a degenerate system of PDE's in fluid mechanics. Annali Mat. pura appl. (IV) 151 (1988), 225-238. | MR 964511 | Zbl 0664.35033
[12] - , On the interior regularity of weak solutions of degenerate elliptic system (the case ). Rend. Sem. Mat. Univ. Padova 88 (1992), 55- 81. | MR 1209116 | Zbl 0818.35024
[13] - , Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids J. Math. Fluid Mech., 7 (2005), 298-313. | MR 2177130 | Zbl 1070.35023
[14] , Non-Newtonian fluids. Fluid mechanics, mixing and heat transfer. Pergamon Press, London, New York1960. | MR 110392 | Zbl 0124.41802