The Boltzmann Equation: Mathematics and Applications
Cercignani, Carlo
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 293-315 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper is subdivided into two parts. The first presents a recent result by the author concerning the existence of the solution of the Boltzmann equation for Maxwell molecules, without any cutoff in the collision kernel, when the solution depends on just one variable. At variance with the well-known theorem of DiPerna- Lions, conservation of energy is also shown to hold. The second part will concern rarefied gas dynamics problems, governed by the Boltzmann equation and con- cerning the theory of micromachines (MEMS) and nanomachines (NENS).

Il lavoro è suddiviso in due parti. La prima presenta un risultato recente dell'autore riguardante l'esistenza della soluzione dell'equazione di Boltzmann per molecole maxwelliane, senza alcun taglio nel nucleo del termine d'urto, quando la soluzione dipende da una sola variabile spaziale. A differenza del ben noto teorema di Di Perna-Lions, si dimostra che vale anche la conservazione dell'energia. La seconda parte presenta problemi di dinamica dei gas rarefatti, retti dall'equazione di Boltzmann riguardanti la teoria delle micromacchine (MEMS) e nanomacchine (NEMS).

Publié le : 2007-06-01
@article{BUMI_2007_8_10B_2_293_0,
     author = {Carlo Cercignani},
     title = {The Boltzmann Equation: Mathematics and Applications},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {293-315},
     zbl = {1178.82042},
     mrnumber = {2339443},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_2_293_0}
}
Cercignani, Carlo. The Boltzmann Equation: Mathematics and Applications. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 293-315. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_2_293_0/

[1] Bony, M., Existence globale et diffusion en théorie cinétique discrète, In Advances in Kinetic Theory and Continuum Mechanics, R. Gatignol and Soubbarameyer, Eds., 81-90, Springer-Verlag, Berlin (1991)

[2] Cercignani, C., Weak solutions of the Boltzmann equation and energy conservation, Appl. Math. Lett., 8 (1995), 53-59. | MR 1357252 | Zbl 0830.35107

[3] Cercignani, C., Theory and Application of the Boltzmann equation. Springer Verlag, New York (1988) | MR 1007992 | Zbl 0646.76001

[4] Cercignani, C., Global Weak Solutions of the Boltzmann Equation, Journal of Statistical Physics118 (2005), 333-342. | MR 2122558 | Zbl 1097.82022

[5] Cercignani, C., Estimating the solutions of the Boltzmann equation, submitted to Jour. Stat. Phys. (2005). | MR 2266453

[6] Cercignani, C. - Illner, R., Global weak solutions of the Boltzmann equation in a slab with diffusive boundary conditions, Arch. Rational Mech. Anal. 134 (1996), 1-16. | MR 1392307 | Zbl 0937.45007

[7] Cercignani, C. - Illner, R. - Pulvirenti, M., The Mathematical Theory of Dilute Gases. Springer Verlag, New York (1994). | MR 1307620 | Zbl 0813.76001

[8] Diperna, R. - Lions, P. L., On the Cauchy problem for Boltzmann equations: Global existence and weak stability, Ann. of Math. 130 (1989), 321-366. | MR 1014927 | Zbl 0698.45010

[9] Ikenberry, E. - Truesdell, C., On the pressures and the flux of energy in a gas according to Maxwell's kinetic theory, I, Jour. Rat. Mech. Anal. 5 (1956), 1-54. | MR 75725 | Zbl 0070.23504

[10] Maxwell, J. C., On the dynamical theory of gases, Phil. Trans. Roy Soc. (London) 157 (1866), 49-88.

[11] Cercignani, C., Slow Rarefied Flows. Theory and Application to Micro-Electro-Mechanical Systems, Birkhauser, Basel, (2006). | MR 2227952 | Zbl 1097.82001

[12] Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp Tower's experiments including an experimental determination of the viscosity of the olive oil, Philos. Trans. R. Soc. London, A177 (1886), 157-234. | Zbl 18.0946.04

[13] Fan, J. - Shen, C., Statistical simulation of low-speed unidirectional flows in transitional regime, in Rarefied Gas Dynamics, edited by R. Brun, R. Campargue, R. Gatignol, J.C. Lengrand, Cepadues Editions, Vol. 2 (1999), 245-252.

[14] Shen, C. - Fan, J. - Xie C, C., Statistical simulation of rarefied gas flows in micro-channels, J. Comp. Physics 189 (2003), 512-526. | Zbl 1061.76515

[15] Cercignani, C. - Lampis, M. - Lorenzani, S., Variational approach to gas flows in microchannels, Phys. Fluids, 14 (2004),3426-3437. | MR 2082039 | Zbl 1187.76086

[16] Fukui, S. - Kaneko, R., Analysis of ultra-thin gas film lubrication based on linearized Boltzmann equation: first report-derivation of a generalized lubrication equation including thermal creep flow, Journal of Tribology, 110 (1988), 253-262.

[17] Fukui, S. - Kaneko, R., Analysis of ultra-thin gas film lubrication based on the linearized Boltzmann equation, JSME International Journal, 30 (1987), 1660-1666.

[18] Cercignani, C. - Lampis, M. - Lorenzani, S., Flow of a Rarefied Gas between Parallel and Almost Parallel Plates, in Rarefied Gas Dynamics, 24th Int. Symp., M. Capitelli Ed., AIP Conf. Proc. 762, pp. 719-724, New York (2005).

[19] Cercignani, C. - Daneri, A., Flow of a rarefied gas between two parallel plates, Journal of Applied Physics, 34 (1963), 3509-3513. | MR 160603

[20] Alexander, F. J. - Garcia, A.L. - Alder, B. J., Direct simulation Monte Carlo for thin film bearings, Phys. Fluids, 6 (1994), 3854-3860. | Zbl 0832.76064