We investigate inclusion indices for quasi-Banach spaces. First we consider the case of function spaces on , then the sequence case and finally we develop an abstract approach dealing with indices defined by the real interpolation scale gen- erated by a quasi-Banach couple.
Vengono studiati gli indici di inclusione per spazi quasi-Banach. Prima si considera il caso di spazi di funzioni su , poi il caso degli spazi di successioni e, infine, si sviluppa un approccio astratto, usando indici definiti dalla scala degli spazi di interpolazione reale generata da una coppia quasi-Banach.
@article{BUMI_2007_8_10B_1_99_0, author = {Fernando Cobos and Luz M. Fern\'andez-Cabrera and Antonio Manzano and Ant\'on Mart\'\i nez}, title = {Inclusion Indices of Quasi-Banach Spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {99-117}, zbl = {1179.46026}, mrnumber = {2310961}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_99_0} }
Cobos, Fernando; Fernández-Cabrera, Luz M.; Manzano, Antonio; Martínez, Antón. Inclusion Indices of Quasi-Banach Spaces. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 99-117. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_99_0/
[1] On smallest and largest spaces among rearrangement-invariant p-Banach function spaces (). Indag. Mathem., N.S. 2 (1991), 283-288. | MR 1149681 | Zbl 0754.46021
- - ,[2] | MR 928802 | Zbl 0647.46057
- , Interpolation of Operators (Academic Press, 1988).[3] | MR 482275
- , Interpolation Spaces. An introduction (Springer, 1976).[4] Best possible compactness results of Lions-Peetre type. Proc. Edinburgh Math. Soc., 44 (2001), 153-172. | MR 1879216 | Zbl 1004.46019
- - ,[5] Interpolation theory and measures related to operator ideals. Quart. J. Math. Oxford, 50 (1999), 401-416. | MR 1726783
- - ,[6] On interpolation of strictly singular operators, strictly cosingular operators and related operator ideals. Proc. Royal Soc. Edinburgh, 130A (2000), 971-989. | MR 1800087 | Zbl 1007.46060
- - - ,[7] On strictly singular and strictly cosingular embeddings between Banach lattices of functions. Math. Proc. Camb. Phil. Soc., 133 (2002), 183-190. | MR 1900261 | Zbl 1011.47014
- ,[8] The interpolation of one-dimensional operators. Voronež Gos. Univ. Trudy Naučn.-Issled. Inst. Mat. VGU Vyp. 11Sb. Statej Funkcional. Anal. i Prilozen, 11 (1973), 31-43 (Russian). | MR 477805
,[9] Inclusion indices of function spaces and applications. Math. Proc. Camb. Phil. Soc.137 (2004), 665-674. | MR 2055054
,[10] On inclusion indices of function spaces. In: Proc. Inter. Symposium on Banach and Function Spaces, p. 185-203, (Yokohama Publishers, 2004). | MR 2147606
,[11] Indices defined by interpolation scales and applications. Proc. Royal Soc. Edinburgh, 134A (2004), 695-717. | MR 2079801
, , , ,[12] Disjointly strictly singular operators and interpolation. Proc. Royal Soc. Edinburgh, 126A (1996), 1011-1026. | MR 1415819 | Zbl 0860.47024
- - ,[13] Disjointly strictly-singular inclusions between rearrangement invariant spaces. J. London Math. Soc., 62 (2000), 239-252. | MR 1772184
- - - ,[14] | MR 200692 | Zbl 0148.12501
, Unbounded Linear Operators (McGraw-Hill, 1966).[15] Orlicz sequence spaces without local convexity. Math. Proc. Camb. Phil. Soc., 81 (1977), 253-277. | MR 433194 | Zbl 0345.46013
,[16] | MR 649411
- - , (Amer. Math. Soc., Providence, R.I., 1982).[17] | MR 540367 | Zbl 0403.46022
- , `Classical Banach Spaces', Vol. II, `Function Spaces' ( Springer, 1979).[18] Indices and interpolation. Dissertationes Math., 234 (1985), 1-54. | MR 820076 | Zbl 0566.46038
,[19] Notes on non-interpolation spaces. J. Approx. Theory, 56 (1989), 333-347. | MR 990348 | Zbl 0668.46039
- ,[20] | MR 582655
, Operator Ideals (North-Holland, 1980).[21] Interpolation theorems in massives of Banach spaces. Soviet Math. Dokl., 16 (1975), 1359-1363. | Zbl 0339.46026
,[22] Embedding functions and their role in interpolation theory. Abstract Appl. Analysis, 1 (1996), 305-325. | MR 1485579 | Zbl 0943.46009
, , Interpolation Theory, Function Spaces, Differential Operators, North-Holland, 1978.