For a group algebra KG of a non-abelian group G over a field K of positive characteristic p we study the strong Lie derived length of the associated Lie algebra.
Per un'algebra gruppale KG di un gruppo non-abeliano G su di un campo K di caratteristica positiva p si studia la lunghezza derivata forte di Lie dell'algebra di Lie associata.
@article{BUMI_2007_8_10B_1_83_0, author = {Francesco Catino and Ernesto Spinelli}, title = {A Note on Strong Lie Derived Length of Group Algebras}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {83-86}, zbl = {1125.16014}, mrnumber = {2310959}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_83_0} }
Catino, Francesco; Spinelli, Ernesto. A Note on Strong Lie Derived Length of Group Algebras. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 83-86. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_83_0/
[1] A note on the derived length of the unit group of a modular group algebra, Comm. Algebra, 30 (2002), 4905-4913. | MR 1940471 | Zbl 1017.16022
,[2] Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra, 212 (1999), 28-64. | MR 1670626 | Zbl 0936.16028
- ,[3] Lie centre-by-metabelian group algebras in even characteristic I, Israel J. Math., 115 (2000), 51-75. | MR 1749673 | Zbl 0947.16016
,[4] Lie solvable group algebras of derived length three, Publ. Mat., 39 (1995), 233-240. | MR 1370883 | Zbl 0856.16025
,[5] | MR 508515
, Topics in group rings, Marcel Dekker, New York (1978).[6] The derived length of Lie soluble group rings I, J. Pure Appl. Algebra, 78 (1992), 291-300. | MR 1163281 | Zbl 0765.16007
,[7] The derived length of Lie soluble group rings II, J. London Math. Soc., 49 (1994), 93-99. | MR 1253014 | Zbl 0804.16026
,