We prove global partial regularity of weaksolutions of the Dirichlet problem for the nonlinear superelliptic system , under natural polynomial growth of the coefficient functions and . We employ the indirect method of the bilinear form and do not use a Caccioppoli or a reverse Hölder inequality.
Si dimostra un risultato di regolarità parziale globale per le soluzioni deboli del problema di Dirichlet associato al sistema superellittico non lineare con ipotesi di crescita naturale polinomiale delle funzioni coefficienti e . Si applica il metodo indiretto della forma bilineare e non si fa uso di una diseguaglianza di Caccioppoli né di una diseguaglianza di Hölder al contrario.
@article{BUMI_2007_8_10B_1_63_0, author = {Christoph Hamburger}, title = {Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {63-81}, zbl = {1178.35178}, mrnumber = {2310958}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_63_0} }
Hamburger, Christoph. Partial Boundary Regularity of Solutions of Nonlinear Superelliptic Systems. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 63-81. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_63_0/
[1] Optimal interior partial regularity for nonlinear elliptic systems: The method of A-harmonic approximation, Manuscr. Math., 103 (2000), 267-298. | MR 1802484 | Zbl 0971.35025
- ,[2] The existence of regular boundary points for non-linear elliptic systems, To appear in: J. Reine Angew. Math. | MR 2300451 | Zbl 1214.35021
- - ,[3] Partial regularity for quasilinear nonuniformly elliptic systems of the general type, J. Math. Sci., New York, 77 (1995), 3178-3182. | MR 1192113
- ,[4] A counter-example to the boundary regularity of solutions to elliptic quasilinear systems, Manuscr. Math., 24 (1978), 217-220. | MR 492658 | Zbl 0373.35027
,[5] | MR 717034 | Zbl 0516.49003
, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Princeton Univ. Press, Princeton, 1983.[6] Almost-everywhere regularity results for solutions of non linear elliptic systems, Manuscr. Math., 28 (1979), 109-158. | MR 535699 | Zbl 0411.35018
- ,[7] | MR 1707291
, Metodi diretti nel calcolo delle variazioni, UMI, Bologna, 1994.[8] Boundary regularity for nonlinear elliptic systems, Calc. Var., 15 (2002), 353-388. | MR 1938819 | Zbl 1148.35315
,[9] Quasimonotonicity, regularity and duality for nonlinear systems of partial differential equations, Ann. Mat. Pura Appl., 169 (1995), 321-354. | MR 1378480 | Zbl 0852.35031
,[10] Partial regularity for minimizers of variational integrals with discontinuous integrands, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 13 (1996), 255-282. | MR 1395672 | Zbl 0863.35022
,[11] A new partial regularity proof for solutions of nonlinear elliptic systems, Manuscr. Math., 95 (1998), 11-31. | MR 1492366 | Zbl 0901.35013
,[12] Partial regularity of solutions of nonlinear quasimonotone systems, Hokkaido Math. J., 32 (2003), 291-316. | MR 1996280 | Zbl 1125.35345
,[13] Partial regularity of minimizers of polyconvex variational integrals, Calc. Var., 18 (2003), 221-241. | MR 2018665 | Zbl 1048.49027
,[14] Optimal partial regularity of minimizers of quasiconvex variational integrals, To appear in: ESAIM Control Optim. Calc. Var. | MR 2351395
,[15] Regularittäsuntersuchungen von Lösungen elliptischer Systeme von quasilinearen Differentialgleichungen zweiter Ordnung, Manuscr. Math., 30 (1979), 53-88. | MR 552363 | Zbl 0429.35033
,[16] The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal., 166 (2003), 287-301. | MR 1961442 | Zbl 1142.35391
,[17] Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var., 18 (2003), 373-400. | MR 2020367 | Zbl 1045.35024
,[18] partial regularity for nonlinear elliptic systems, Acta Math. Sci., 15 (1995), 254-263. | MR 1356048
,[19] partial regularity for solutions of nonlinear elliptic systems, Acta Math. Sci., 12 (1992), 33-41. | MR 1258393
- ,