Let be a couple of Lipschitz maps such that almost everywhere in . Then is a -rectifiable set, namely it may be covered by countably many curves of class embedded in . As a conseguence, projecting the rectifiable carrier of a one-dimensional generalized Gauss graph provides a -rectifiable set.
Siano due mappe Lipschitziane tali che , quasi ovunque in . Allora è un insieme -rettificabile, ossia esso è incluso (eccetto per un insieme di misura nulla) in una unione numerabile di sottovarietà uno-dimensionali di di classe . Di conseguenza, la proiezione del carrier rettificabile di un grafico di Gauss generalizzato uno-dimensionale è un insieme - rettificabile.
@article{BUMI_2007_8_10B_1_237_0, author = {Silvano Delladio}, title = {A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {237-252}, zbl = {1178.53003}, mrnumber = {2310966}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_237_0} }
Delladio, Silvano. A Result About $C^2$-Rectifiability of One-Dimensional Rectifiable Sets. Application to a Class of One-Dimensional Integral Currents. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 237-252. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_237_0/
[1] -rectifiable sets, J. reine angew. Math., 453 (1994), 1-20. | MR 1285779
- ,[2] Curvatures, Functionals, Currents, Indiana Univ. Math. J., 39 (1990), 617-669. | MR 1078733
- - ,[3] Slicing of Generalized Surfaces with Curvatures Measures and Diameter's Estimate, Ann. Polon. Math., LXIV 3 (1996), 267-283. | MR 1410345 | Zbl 0865.49029
,[4] Do Generalized Gauss Graphs Induce Curvature Varifolds?Boll. Un. Mat. Ital., 10-B (1996), 991-1017. | MR 1430163 | Zbl 0886.49031
,[5] The projection of a rectifiable Legendrian set is -rectifiable: a simplified proof, Proc. Royal Soc. Edinburgh, 133A (2003), 85-96. | MR 1960048 | Zbl 1035.53010
,[6] Taylor's polynomials and non-homogeneous blow-ups, Manuscripta Math., 113, n. 3 (2004), 383-396. | MR 2129311 | Zbl 1093.53078
,[7] Non-homogeneous dilatations of a function graph and Taylor's formula: some results about convergence, Real Anal. Exchange, 29, n. 2 (2003/2004), 1-26. | MR 2083806
,[8] | MR 257325 | Zbl 0176.00801
, Geometric Measure Theory, Springer-Verlag1969.[9] Some Remarks On Legendrian Rectifiable Currents, Manuscripta Math., 97, n. 2 (1998), 175-187. | MR 1651402 | Zbl 0916.53038
,[10] Erratum to ``Some Remarks On Legendrian Rectifiable Currents'', Manuscripta Math., 113, n. 3 (2004), 397-401. | MR 2129312 | Zbl 1066.53014
,[11] | MR 1333890 | Zbl 0819.28004
, Geometry of sets and measures in Euclidean spaces, Cambridge University Press, 1995.[12] | MR 933756 | Zbl 0671.49043
, Geometric Measure Theory, a beginner's guide, Academic Press Inc.1988.[13] Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis, Canberra, Australia, 3 (1984). | MR 756417
, , Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.