We present in this text two results of long time existence for solutions of nonlinear Klein-Gordon equations, obtained through normal forms methods. In particular, we indicate how these methods allow one to obtain almost global solutions for that equation on spheres, despite the fact that such solutions do not go to zero when time goes to infinity.
Presentiamo in questo testo due risultati di esistenza di lungo periodo per soluzioni di equazioni non lineari di Klein-Gordon, ottenuti mediante metodi di forme normali. In particolare indichiamo come questi metodi permettono di ottenere soluzioni quasi globali per tale equazione sulle sfere, a dispetto del fatto che tali soluzioni non tendono a zero quando il tempo tende ad infinito.
@article{BUMI_2007_8_10B_1_1_0, author = {Jean-Marc Delort}, title = {Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {1-23}, zbl = {1178.35310}, mrnumber = {2310955}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_1_0} }
Delort, Jean-Marc. Normal Forms and Long Time Existence for Semi-Linear Klein-Gordon Equations. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 1-23. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_1_0/
[1] Birkhoff normal form for some nonlinear PDEs, Comm. Math. Phys., 234, no. 2 (2003), 253-285. | MR 1962462 | Zbl 1032.37051
,[2] Almost global existence for Hamiltonian semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, to appear, Comm. Pure Appl. Math. | MR 2349351 | Zbl 1170.35481
- - - ,[3] Birkhoff normal form for pdes with tame modulus, Duke Math. J., 135, no. 3 (2006), 507-567. | MR 2272975 | Zbl 1110.37057
- ,[4] Construction of approximative and almost periodic solutions of perturbed linear Schödinger and wave equations, Geom. Funct. Anal., 6, no. 2 (1996), 201-230. | MR 1384610 | Zbl 0872.35007
,[5] Sur le spectre des opérateurs elliptiques à bicaractéristiques toutes périodiques, Comment. Math. Helv., 54, no. 3 (1979), 508-522. | MR 543346 | Zbl 0459.58014
,[6] Existence globale et comportement asymptotique pour l'équation de Klein-Gordon quasi linéaire à données petites en dimension 1, École Norm. Sup. (4) 34, no. 1 (2001), 1-61. Erratum, Ann. Sci. École Nor. Sup. (4) 39, no.2 (2006), 335-345. | MR 1833089 | Zbl 0990.35119
,[7] Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions, J. Funct. Anal., 211, no. 2 (2004), 288-323. | MR 2056833 | Zbl 1061.35089
- - ,[8] Long-time existence for small data nonlinear Klein-Gordon equations on tori and spheres, Int. Math. Res. Not., no. 37 (2004), 1897-1966. | MR 2056326 | Zbl 1079.35070
- ,[9] Long-time existence for semi-linear Klein-Gordon equations with small Cauchy data on Zoll manifolds, Amer. J. Math., 128, no. 5 (2006), 1187-1218. | MR 2262173 | Zbl 1108.58023
- ,[10] The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29, no. 1 (1975), 39-79. | MR 405514 | Zbl 0307.35071
- ,[11] Birkhoff normal form and hamiltonian PDEs, preprint, (2006).
,[12] Lectures on spectral theory of elliptic operators, Duke Math. J., 44, no. 3 (1977), 485-517. | MR 448452 | Zbl 0463.58024
,[13] 26, Springer-Verlag, Berlin, 1997. viii+289 pp. | MR 1466700
, Lectures on nonlinear hyperbolic differential equations, Mathématiques and Applications,[14] Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions, Comm. Pure Appl. Math., 38, no. 5 (1985), 631-641. | MR 803252 | Zbl 0597.35100
,[15] A remark on Long Range Scattering for the critical nonlinear Klein-Gordon equation, J. Hyperbolic Differ. Equ. 2, no. 1 (2005), 77-89. | MR 2134954 | Zbl 1080.35044
- ,[16] A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation, Lett. Math. Phys., 73, no. 3 (2005), 249-258. | MR 2188297 | Zbl 1106.35072
- ,[17] Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial. Ekvac., 40, no. 2 (1997), 313-333. | MR 1480281 | Zbl 0891.35142
- - ,[18] Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlinearity in two space dimensions, Math. Z., 222, no. 3 (1996), 341-362. | MR 1400196 | Zbl 0877.35030
- - ,[19] Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., 38 (1985), 685-696. | MR 803256 | Zbl 0597.35101
,[20] Asymptotics of eigenvalue clusters for the Laplacian plus a potential, Duke Math. J., 44, no. 4 (1977), 883-892. | MR 482878 | Zbl 0385.58013
,