The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach
Gargiulo, Giuliano ; Zappale, Elvira
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 159-194 / Harvested from Biblioteca Digitale Italiana di Matematica

Dimension reduction is used to derive the energy of non simple materials grade two thin films. Relaxation and Γ convergence lead to a limit defined on a suitable space of bi-dimensional Young measures. The underlying ``deformation'' in the limit model takes into account the Cosserat theory.

Tecniche di riduzione dimensionale vengono adoperate al fine di descrivere l'energia di film sottili costituiti da materiali non semplici di grado due. Il rilassamento e la Γ convergenza conducono ad un limite definito su un opportuno spazio di misure di Young bidimensionali. La ``deformazione'' relativa al modello limite è consistente con la teoria di Cosserat.

Publié le : 2007-02-01
@article{BUMI_2007_8_10B_1_159_0,
     author = {Giuliano Gargiulo and Elvira Zappale},
     title = {The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {159-194},
     zbl = {1129.74028},
     mrnumber = {2310963},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10B_1_159_0}
}
Gargiulo, Giuliano; Zappale, Elvira. The Energy Density of Non Simple Materials Grade Two Thin Films via a Young Measure Approach. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 159-194. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10B_1_159_0/

[1] Acerbi, E. - Buttazzo, G., Percivale, D., A Variational Definition of the Strain Energy for an Elastic String, J. Elasticity, 25, n. 2 (1991), 137-148. | MR 1111364 | Zbl 0734.73094

[2] Antman, S. S., Nonlinear Problems in Elasticity, Applied Mathemathical Science, 107, Springer Verlag, New York, (1995). | MR 1323857 | Zbl 0820.73002

[3] Anzellotti, - Baldo, S. - Percivale, D., Dimension reduction in variational problems, asymptotic development in Γ-convergence and thin strucutures in elasticity, Asymptot. Anal., 9, No. 1 (1994), 61-100. | MR 1285017 | Zbl 0811.49020

[4] Ball, J., A version of the fundamental theorem for Young measures, PDE's and Continuum Models of Phase Transition, M. Rascle, D. Serre - M. Slemrod, eds., Lecture Notes in Phys., 334, Springer-Verlag, Berlin, (1989), 207-215. | MR 1036070 | Zbl 0991.49500

[5] Belik, P. - Luskin, M., A Total-Variation Surface Energy Model for Thin Films of Martensitic Cristals, Interfaces Free Bound., 4, n. 1 (2002), 71-88. | MR 1877536 | Zbl 1014.49013

[6] Bhattacharya, K. - James, R.D., A Theory of Thin Films of Martensitic Materials with Applications to Microactuators, J. Mech. Phys. Solids, 47, n. 3 (1999). | MR 1675215 | Zbl 0960.74046

[7] Braides, A. - Fonseca, I. - Francfort, G., 3D-2D Asymptotic Analysis for Inhomogeneous Thin Films, Indiana Univ. Math. J., 49, n. 4 (2000), 1367-1404. | MR 1836533 | Zbl 0987.35020

[8] Braides, A. - Fonseca, I. - Leoni, G., mathcalA-quasiconvexity: relaxation and homogenization, ESAIM, Control Optim. Calc. Var., 5 (2000), 539-577. | MR 1799330 | Zbl 0971.35010

[9] Bocea, M. - Fonseca, I., Equi-integrability Results for 3D-2D Dimension Reduction Problems, ESAIM: Control Optim. Calc. Var., 7 (2002), 443-470. | MR 1925037 | Zbl 1044.49010

[10] Bocea, M. - Fonseca, I., A Young Measure Approach to a Nonlinear Membrane Model Involving the Bending Moment, Proc. Royal Soc. Edimb. (2004) to appear. | MR 2099567 | Zbl 1084.49012

[11] Buttazzo, G., Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, 207. Harlow: Longman Scientific and Technical; New York: John Wiley and Sons. (1989). | MR 1020296

[12] Carbone, L. - De Arcangelis, R., Unbounded functionals in the calculus of variations. Representations, relaxation, and homogenization, Chapman and Hall/CRC Research Notes in Mathematics, 125 Boca Raton, Chapman and Hall/CRC. xiii, (2002). | MR 1910459

[13] Ciarlet, P.G., Mathematical elasticity. Vol. II. Theory of plates. Studies in Mathematics and its Applications, 27. North-Holland Publishing Co., Amsterdam, (1997). | MR 1477663 | Zbl 0888.73001

[14] Ciarlet, P.G. - Destuynder, P., A Justification of the Two-Dimensional Linear Plate Model, J. Mécanique 18, n. 2 (1979), 315-344. | MR 533827 | Zbl 0415.73072

[15] Ciarletta, M. - Iesan, D., Nonclassical Elastic Solids Pitman Research Notes in Mathematics, Longman Scientific and Technical, Harlow; copublished in the United States with John Wiley and Sons, Inc., 293, New York, (1993). | MR 1247456

[16] Dal Maso, G., An Introduction to Γ-convergence, Birkhauser, Boston (1993). | MR 1201152 | Zbl 0816.49001

[17] Damlamian, A. - Vogelius, M., Homogenization Limits of the Equations of Elasticity in Thin Domains, SIAM J. Math. Anal., 18 n. 2 (1987) 435-451. | MR 876283 | Zbl 0614.73012

[18] De Giorgi, E. - Franzoni, T., Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) n. 6 (1975), 842-850. | MR 448194

[19] Fonseca, I. - Müller, S., A-quasiconvexity, Lower Semicontinuity and Young measures, SIAM J. Math. Anal., 30 (6) (1999), 1355-1390. | MR 1718306

[20] Freddi, L. - Paroni, R., The energy density of martensitic thin films via dimension reduction, Interfaces Free Bound-. 6, n. 4 (2004), 439-459. | MR 2111565 | Zbl 1072.35185

[21] Freddi, L. - Paroni, R., A 3D-1D Young measure theory of an elastic string, Asymptotic Analysis, 39 n. 1 (2004), 61-89. | MR 2083576 | Zbl 1065.49010

[22] Friesecke, G. - James, R. D. - Müller, S., Rigorous Derivation of nonlinear plate theory and geometric rigidity, C. R., Math., Acad. Sci. Paris, 334, No. 2 (2002), 173-178. | MR 1885102 | Zbl 1012.74043

[23] Friesecke, G. - James, R.D. - Müller, J., A Theorem on Geometric Rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., 55, No. 11 (2002), 1461-1506. | MR 1916989 | Zbl 1021.74024

[24] Fox, D.D. - Raoult, A. - Simo, J. C., A Justification of Nonlinear Properly Invariant Plate Theories, Arch. Rational Mech. Anal., 124, n. 2 (1993), 157-199. | MR 1237909 | Zbl 0789.73039

[25] Gargiulo, G., Zappale, E., A Remark on the Junction in a Thin Multi-Domain: the Non Convex Case, to appear on NoDEA. | MR 2374206 | Zbl 1132.74300

[26] Gaudiello, A. - Gustafsson, B. - Lefter, C. - Mossino, J., Asymptotic analysis of a class of minimization problems in a thin multidomain, Calc. Var. Partial Differ. Equ., 15, No. 2 (2002), 181-202. | MR 1930246 | Zbl 1003.49013

[27] Gaudiello, A. - Monneau, R. - Mossino, J. - Murat, F. - Sili, A., On the junction of elastic plates and beams, C. R., Math., Acad. Sci. Paris, 335, No. 8 (2002), 717-722. | MR 1941655 | Zbl 1032.74037

[28] Gaudiello, A. - Zappale, E., Junction in a Thin Multidomain for a Fourth Order Problem, to appear on Math. Mod. Meth. Appl. Sc. | MR 2287334 | Zbl 1109.74032

[29] Giaquinta, M. - Modica, G., Regularity Results for Some Classes of Higher Order Non-Linear Elliptic Systems, J. für reine and angew. Math., 311/312 (1979), 145-169. | MR 549962 | Zbl 0409.35015

[30] James, R. - Kinderlehrer, D., Theory of Diffusionless Phase Transition, Lecture Notes in Physics, 334, Springer (1989), 51-84. | MR 1036063 | Zbl 0991.74504

[31] Kinderlehrer, D. - Pedregal, P., Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal., 115 (1991), 329-265. | MR 1120852 | Zbl 0754.49020

[32] Kinderlehrer, D. - Pedregal, P., Gradient Young measures generated by sequences in Sobolev spaces, J. Geom. Anal., 4 (1994), 59-90. | MR 1274138 | Zbl 0808.46046

[33] Le Dret, H. - Raoult, A., The Nonlinear Membrane Model as Variational Limit of Nonlinear Three-Dimensional Elasticity, J. Math. Pures Appl., 74, n. 6 (1995), 549-578. | MR 1365259 | Zbl 0847.73025

[34] Le Dret, H. - Raoult, A., Variational Convergence for Nonlinear Shell Models with Directors and Related Semicontinuity and Relaxation Results, Arch. Rational Mech. Anal., 154, n. 2 (2000), 101-134. | MR 1784962 | Zbl 0969.74040

[35] Le Dret, H. - Meunier, N., Modeling Heterogeneous Wires Made of Martensitic Materials, C. R. Acad. Sci. Paris Sér. I. Math., 337, (2003), 143-147. | MR 1998847 | Zbl 1084.74038

[36] Le Dret, H. - Meunier, N., Modeling Heterogeneous Martensitic Wires, Preprint Laboratoire J. L. Lions, Univ. P. et M. Curie, Parigi, in preparation. | MR 2126136 | Zbl 1160.74395

[37] Morrey, C.B., Multiple Integrals in the Calculus of Variations, Springer-VerlagBerlin, 1966. | MR 202511 | Zbl 0142.38701

[38] Pedregal, P., Parametrized measures and Variational Principles, Birkhäuser, Boston (1997). | MR 1452107

[39] Santos, P.M. - Zappale, E., Second Order Analysis for Thin Structures, Nonlinear Anal., Theory Methods Appl., 56A, n. 5 (2004), 679-713. | MR 2036786 | Zbl 1044.49014

[40] Shu, Y.C., Heterogeneous Thin Films of Martensitic Materials, Arch. Rational Mech. Anal.153, n. 1 (2000), 39-90. | MR 1772534 | Zbl 0959.74043

[41] Toupin, R.A., Elastic Materials with Couple-Stresses, Arch. Rational Mech. Anal., 11, (1962), 386-414. | MR 144512 | Zbl 0112.16805

[42] Toupin, R.A., Theories of Elasticity with Couple Stress, Arch. Rational Mech. Anal., 17 (1964), 85-112. | MR 169425 | Zbl 0131.22001

[43] Valadier, M., A course on Young Measures, Rend. Ist. Mat. Univ. Trieste, 26, Suppl., (1994), 349-394. | MR 1408956