@article{BUMI_2007_8_10A_3_465_0, author = {Antonio Giorgilli}, title = {I moti quasi periodici e la stabilit\`a del sistema solare. II: Dai tori di Kolmogorov alla stabilit\`a esponenziale}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {10-A}, year = {2007}, pages = {465-495}, mrnumber = {2394380}, language = {it}, url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10A_3_465_0} }
Giorgilli, Antonio. I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 465-495. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10A_3_465_0/
[1] Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surv., 18 (1963), 9. | MR 163025
,[2] Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Math. Nauk, 18 N. 6 (1963), 91; Russ. Math. Surv., 18 N. 6 (1963), 85. | MR 170705
,[3] Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 5 N. 1 (1964), 581-585. | Zbl 0135.42602
,[4] Tous les nombres characteristiques de Ljapunov sont effectivement calculables, C. R. Acad. Sc. Paris 268 A (1978), 431-433. | MR 516345 | Zbl 0374.65046
- - - ,[5] Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: theory, Meccanica (1980), 9-20; Part 2: numerical applications, Meccanica (1980), 21-30. | Zbl 0488.70015
- - - ,[6] A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech., 37 (1985), 1-25. | MR 830795 | Zbl 0602.58022
- - ,[7] Stability of motions near resonances in quasi- integrable Hamiltonian systems. Journ. Stat. Phys., 44 (1986), 293. | MR 857061 | Zbl 0636.70018
- ,[8] Dynamical systems, New York (1927). | MR 209095
,[9] Long term numerical integration and synthetic theories for the motion of outer planets, Astronomy and Astrophysics, 181 (1987), 182-194. | Zbl 0618.70006
- - ,[10] KAM stability and Celestial Mechanics, Memoirs of AMS, 187 n. 878 (2007). | MR 2307840
- ,[11] | MR 1988785 | Zbl 1041.85001
, Order and chaos in dynamical Astronomy, Springer-Verlag (2002).[12] Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. R. Astron. Soc., (2005).
- ,[13] Studies of nonlinear problems, Los Alamos document LA-1940 (1955). | Zbl 0353.70028
- - ,[14] Exponential stability for time dependent potentials, ZAMP (1992). | MR 1182784 | Zbl 0766.58032
- ,[15] On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261.
- ,[16] Notes on exponential stability of Hamiltonian systems, in Dynamical Systems, Part I: Hamiltonian systems and Celestial MechanicsPubblicazioni del Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003), 87-198. | MR 2071233 | Zbl 1081.37033
,[17] On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron. J., 71 (1966), 670-686.
,[18] The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79. | MR 158746
- ,[19] Proceedings of the American Association for the Advancement of Science for 1866. | MR 1568920
,[20] The zone of asteroids and the ring of Saturn, Astronomical Register, 22 (1884), 243-247.
,[21] Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527. | MR 68687 | Zbl 0056.31502
,[22] A numerical experiment on the chaotic behaviour of the solar system, Nature, 338 (1989), 237-238.
,[23] Large scale chaos in the solar system, Astron. Astroph., 287 (1994). | Zbl 1052.70547
,[24] On the equilateral configuration in the restricted problem of three bodies, Proc. London Math. Soc. (3) 9 (1959), 343-372. | MR 109077 | Zbl 0092.16802
,[25] The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3) 9 (1959), 525-543. | MR 1576803 | Zbl 0093.17302
,[26] Invariant tori in the Sun-Jupiter-Saturn system, DCDS-B, 7 (2007), 377-398. | MR 2276414 | Zbl 1129.70015
- ,[27] Canonical perturbation theory via simultaneous approximations, Usp. Math. Nauk.47 (1992), 59-140. English transl in Russ. Math. Surv. | MR 1209145 | Zbl 0795.58042
,[28] Secular variations of the semimajor axes: theory and experiments, Astronomy and Astrophysics, 172 (1987), 265-269. | Zbl 0617.70009
- - ,[29] The resonant structure of the solar system, Icarus8 (1968), 203-215.
,[30] On the dynamics in the asteroids' belt. Part I: general theory, Cel. Mech. 47 (1990), 145-172. | MR 1050337 | Zbl 0701.70010
- ,[31] On the dynamics in the asteroids' belt. Part II: detailed study of the main resonances, Cel. Mech., 47 (1990), 173-204. | MR 1050338 | Zbl 0701.70011
- ,[32] Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607-1617. | MR 1316113
- ,[33]
, Modern celestial Mechanics. Aspects of solar system dynamics, Taylor & Francis, London (2002).[34] Stabilitätsverhalten kanonisher differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, nr. 6 (1955), 87-120.
,[35] On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II (1962), 1-20. | Zbl 0107.29301
,[36] | Zbl 0271.70009
, Stable and random motions in dynamical systems, Princeton University press, Princeton (1973).[37] The Origin of Chaos in Outer Solar System, Science, 283, Iss. 5409, 1877 (1999).
- ,[38] Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, 32 (1977), 1. | Zbl 0389.70028
,[39] Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs., 5 (1979), 5.
,[40] The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system, Celest. Mech. Dyn. Astr., 92 (2005), 53-69. | Zbl 1083.70019
- - ,[41] Recherche des courbes invariantes d'une transformation ponctuelle plane conservant les aires, Bull. Astron., 32 (1967), 267-285. | Zbl 0171.22902
- ,[42] Numerical evidence that the motion of Pluto is chaotic, Science, 241 (1988), 433-437.
- ,