Simmetrie su varietà di contatto e varietà almost-S;
Dileo, Giulia
Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007), p. 223-226 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2007-08-01
@article{BUMI_2007_8_10A_2_223_0,
     author = {Giulia Dileo},
     title = {Simmetrie su variet\`a di contatto e variet\`a almost-S;},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {10-A},
     year = {2007},
     pages = {223-226},
     zbl = {1277.53031},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2007_8_10A_2_223_0}
}
Dileo, Giulia. Simmetrie su varietà di contatto e varietà almost-S;. Bollettino dell'Unione Matematica Italiana, Tome 10-A (2007) pp. 223-226. http://gdmltest.u-ga.fr/item/BUMI_2007_8_10A_2_223_0/

[1] Blair, D. E., Geometry of manifolds with structural group U(n) x O(s), J. Differential Geom., 4 (1970), 155-167. | Zbl 0202.20903

[2] Blair, D. E., Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics203, Birkhäuser, Boston (2002). | Zbl 1011.53001

[3] Blair, D. E. e Sierra, J. M., 5-dimensional locally symmetric contact metric manifolds, Boll. Unione Mat. Ital. (7), 7-A (1993), 299-311. | Zbl 0811.53029

[4] Boeckx, E. e Cho, J. T., Locally symmetric contact metric manifolds, Monatsh. Math., 148, no. 4 (2006), 269-281. | Zbl 1103.53047

[5] Dileo, G. e Lotta, A., On the structure and symmetry properties of almost S-manifolds, Geom. Dedicata, 110, no. 1 (2005), 191-211. | Zbl 1077.53037

[6] Ghosh, A. e Sharma, R., On contact strongly pseudo-convex integrable CR manifolds, J. Geom, 66 (1999), 116-122. | Zbl 0935.53035

[7] Kaup, W. e Zaitsev, D., On symmetric Cauchy-Riemann manifolds, Adv. Math., 149, no. 2 (2000), 145-181. | Zbl 0954.32016

[8] Lotta, A. e Pastore, A. M., The Tanaka-Webster connection for almost S-manifolds and Cartan geometry, Arch. Math. (Brno), 40, no. 1 (2004), 47-61. | Zbl 1114.53022

[9] Pastore, A. M., Classification of locally symmetric contact metric manifolds, Balkan J. Geom. Appl., 3, no. 1 (1998), 89-96. | Zbl 0928.53040