The Kodaira dimension of Siegel modular varieties of genus 3 or higher
Schellhammer, Eric
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 749-776 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider the moduli space Apol(n) of (non-principally) polarised abelian varieties of genus g3 with coprime polarisation and full level-n structure. Based upon the analysis of the Tits building in [S], we give an explicit lower bound on n that is sufficient for the compactified moduli space to be of general type if one further explicit condition is satisfied.

Consideriamo lo spazio dei moduli Apol(n) delle varietà abeliane (non principalmente) polarizzate di genere g3 con polarizzazione coprima e struttura di livello n completa. Basandoci sull'analisi dei building di Tits di [S], diamo un limite inferiore esplicito per n che è sufficiente affinché lo spazio dei moduli compattificato sia di tipo generale, se un'ulteriore condizione esplicita viene soddisfatta.

Publié le : 2006-10-01
@article{BUMI_2006_8_9B_3_749_0,
     author = {Eric Schellhammer},
     title = {The Kodaira dimension of Siegel modular varieties of genus 3 or higher},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {749-776},
     zbl = {1182.14017},
     mrnumber = {2274125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_749_0}
}
Schellhammer, Eric. The Kodaira dimension of Siegel modular varieties of genus 3 or higher. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 749-776. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_749_0/

[AMRT] Ash, A. - Mumford, D. - Rapoport, M. - Tai, Y., Smooth Compactification of Locally Symmetric Varieties, Brookline: Math. Sci Press 1975. | Zbl 0334.14007

[B] Brasch, H.-J., Lifting level D-structures of abelian varieties, Arch. Math., Vol. 60 (1993), 553-562. | Zbl 0787.14025

[BC] Barnes, E. S. - Cohn, M. J., On the inner product of positive quadratic forms, J. London Math. Soc. (2), 12 (1975), 32-36. | Zbl 0312.10013

[BL] Birkenhake, C. - Lange, H., An isomorphism between moduli spaces of abelian varieties, Math. Nach., Vol. 253, Iss. 1 (2003), 3-7. | Zbl 1034.14019

[C] Cassels, J. W. S., An introduction to the geometry of numbers, Springer-Verlag, 1959. | Zbl 0086.26203

[F] Freitag, E., Siegelsche Modulfunktionen, Springer-Verlag, 1983.

[H] Hulek, K., Igusa's Modular Form and the Classification of Siegel Modular Threefolds, Moduli of Abelian Varieties. Progress in Mathematics195, Birkhauser Verlag (2001), 217-229. | Zbl 1054.14027

[HKW] Hulek, K. - Kahn, C. - Weintraub, S. H., Moduli Spaces of Abelian Surfaces: Compactification, Degenerations and Theta Functions, De Gruyter Expositions in Mathematics 12, 1993. | Zbl 0809.14035

[HS] Hulek, K. - Sankaran, G. K., The Geometry of Siegel Modular Varieties, Advanced Studies in Pure Mathematics 35 (2002), Higher Dimensional Birational Geometry, 89-156. | Zbl 1074.14021

[M] Mumford, D., Hirzebruch's Proportionality Theorem in the Non-Compact Case, Inv. Math., 42 (1977), 239-272. | Zbl 0365.14012

[M2] Mumford, D., On the Kodaira Dimension of the Siegel Modular Variety, Lec. Notes in Math. Vol. 997, Springer-Verlag, 1983, 348-376. | Zbl 0527.14036

[Nami] Namikawa, Y., Toroidal Compactification of Siegel Spaces, Lec. Notes in Math. Vol. 812, Springer-Verlag, 1980. | Zbl 0466.14011

[Nath] Nathanson, M. B., Elementary Methods in Number Theory, Springer-Verlag, 1991.

[O] Oda, T., Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties, Ergeb. Math. Grenzgeb., 3 Folge, 15 (1988), Berlin, Springer-Verlag. | Zbl 0628.52002

[S] Schellhammer, E., On the Tits building of paramodular groupshttp://arXiv.org/abs/math/0405321 | Zbl 1177.51011

[T] Tai, Y.-S., On the Kodaira Dimension of the Moduli Space of Abelian Varieties, Invent. Math., 68 (1982), 425-439. | Zbl 0508.14038

[T2] Tai, Y.-S., On the Kodaira Dimension of the Moduli Spaces of Abelian Varieties with non-principal polarizations, In: Abelian Varietes, Egloffstein 1993, 293-302, de Gruyter, 1995. | Zbl 0848.14021