Adding or removing an element from a pseudo-symmetric numerical semigroup
Rosales, J. C.
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 681-696 / Harvested from Biblioteca Digitale Italiana di Matematica

If S is a pseudo-symmetric numerical semigroup, g is its Frobenius number and S is a minimal generator of S, then S{g}, S{g}S and S{12g,g} are also numerical semigroups. In this paper we study these constructions.

Se S è un semigruppo numerico pseudo-simmetrico, se g è il suo numero di Frobenius e se x è un generatore minimo di S allora anche S{g}, S{g} e S{12g,g} sono semigruppi numerici. In questo lavoro ci proponiamo di studiare tali costruzioni.

Publié le : 2006-10-01
@article{BUMI_2006_8_9B_3_681_0,
     author = {J. C. Rosales},
     title = {Adding or removing an element from a pseudo-symmetric numerical semigroup},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {681-696},
     zbl = {1147.20052},
     mrnumber = {2274120},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_681_0}
}
Rosales, J. C. Adding or removing an element from a pseudo-symmetric numerical semigroup. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 681-696. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_681_0/

[1] Apery, R., Sur les branches superlineaires des courbes algebriques, C. R. Acad. Sci. Paris, 222 (1946), 1198-1200. | Zbl 0061.35404

[2] Barucci, V. - Dobbs, D. E. - Fontana, M., Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc., 598 (1997). | Zbl 0868.13003

[3] Brauer, A., On a problem of partitions, Amer. J. Math., 64 (1942), 299-312. | Zbl 0061.06801

[4] Brauer, A. - Schockley, J. E., On a problem of Frobenius, J. Reine Angew. Math., 211 (1962), 215-220.

[5] Fröberg, R., Gottlieb, G. - Häggkvist, R., On numerical semigroups, Semigroup Forum, 35 (1987), 63-83.

[6] Gilmer, R., Commutative semigroup rings, The University of Chicago Press, 1984. | Zbl 0566.20050

[7] Herzog, J., Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193. | Zbl 0211.33801

[8] Komeda, J., Non-Weierstrass numerical semigroups, Semigroup Forum, 57 (1998), 157-185. | Zbl 0922.14022

[9] Kunz, E., The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25 (1973), 748-751. | Zbl 0197.31401

[10] Johnson, S. M., A linear diophantine problem, Can. J. Math., 12 (1960), 390-398. | Zbl 0096.02803

[11] Rosales, J. C., Symmetric numerical semigroups with arbitrary multiplicity and embedding dimension, Proc. Amer. Math. Soc., 129 (2001), 2197-2203. | Zbl 0972.20036

[12] Rosales, J. C., Numerical semigroups that differ from a symmetric numerical semigroup in one element, to appear in Algebra Colloquium. | Zbl 1146.20044

[13] Rosales, J. C., García-Sánchez, P. A., Finitely generated commutative monoids, Nova Science Publishers, New York, 1999.

[14] Rosales, J. C. - Branco, M. B., Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups, J. Pure Appl. Algebra, 171 (2002), 303-314. | Zbl 1006.20043

[15] Rosales, J. C. - Branco, M. B., Irreducible numerical semigroups with arbitrary multiplicity and embedding dimension, J. Algebra, 264 (2003), 305-315. | Zbl 1028.20039

[16] Rosales, J. C. - Branco, M. B., Irreducible numerical semigroups, Pacific J. Math., 209 (2003), 131-143. | Zbl 1057.20042

[17] Selmer, E. S., On a linear diophantine problem of Frobenius, J. Reine Angew. Math., 293/294 (1977), 1-17. | Zbl 0349.10009

[18] Sylvester, J. J., Mathematical questions with their solutions, Educational Times, 41 (1884), 21.