If is a pseudo-symmetric numerical semigroup, is its Frobenius number and is a minimal generator of , then , S and are also numerical semigroups. In this paper we study these constructions.
Se è un semigruppo numerico pseudo-simmetrico, se è il suo numero di Frobenius e se è un generatore minimo di allora anche , e sono semigruppi numerici. In questo lavoro ci proponiamo di studiare tali costruzioni.
@article{BUMI_2006_8_9B_3_681_0, author = {J. C. Rosales}, title = {Adding or removing an element from a pseudo-symmetric numerical semigroup}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {681-696}, zbl = {1147.20052}, mrnumber = {2274120}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_681_0} }
Rosales, J. C. Adding or removing an element from a pseudo-symmetric numerical semigroup. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 681-696. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_681_0/
[1] Sur les branches superlineaires des courbes algebriques, C. R. Acad. Sci. Paris, 222 (1946), 1198-1200. | Zbl 0061.35404
,[2] Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Memoirs of the Amer. Math. Soc., 598 (1997). | Zbl 0868.13003
- - ,[3] On a problem of partitions, Amer. J. Math., 64 (1942), 299-312. | Zbl 0061.06801
,[4] On a problem of Frobenius, J. Reine Angew. Math., 211 (1962), 215-220.
- ,[5] On numerical semigroups, Semigroup Forum, 35 (1987), 63-83.
, - ,[6] | Zbl 0566.20050
, Commutative semigroup rings, The University of Chicago Press, 1984.[7] Generators and relations of abelian semigroups and semigroup rings, Manuscripta Math., 3 (1970), 175-193. | Zbl 0211.33801
,[8] Non-Weierstrass numerical semigroups, Semigroup Forum, 57 (1998), 157-185. | Zbl 0922.14022
,[9] The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25 (1973), 748-751. | Zbl 0197.31401
,[10] A linear diophantine problem, Can. J. Math., 12 (1960), 390-398. | Zbl 0096.02803
,[11] Symmetric numerical semigroups with arbitrary multiplicity and embedding dimension, Proc. Amer. Math. Soc., 129 (2001), 2197-2203. | Zbl 0972.20036
,[12] Numerical semigroups that differ from a symmetric numerical semigroup in one element, to appear in Algebra Colloquium. | Zbl 1146.20044
,[13]
, , Finitely generated commutative monoids, Nova Science Publishers, New York, 1999.[14] Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups, J. Pure Appl. Algebra, 171 (2002), 303-314. | Zbl 1006.20043
- ,[15] Irreducible numerical semigroups with arbitrary multiplicity and embedding dimension, J. Algebra, 264 (2003), 305-315. | Zbl 1028.20039
- ,[16] Irreducible numerical semigroups, Pacific J. Math., 209 (2003), 131-143. | Zbl 1057.20042
- ,[17] On a linear diophantine problem of Frobenius, J. Reine Angew. Math., 293/294 (1977), 1-17. | Zbl 0349.10009
,[18] Mathematical questions with their solutions, Educational Times, 41 (1884), 21.
,