On the rate of convergence of the Bézier-type operators
Anioł, Grażyna
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 657-666 / Harvested from Biblioteca Digitale Italiana di Matematica

For bounded functions f on an interval I, in particular, for functions of bounded p-th power variation on I there is estimated the rate of pointwise convergence of the Bezier-type modification of the discrete Feller operators. In the main theorem the Chanturiya modulus of variation is used.

Per le funzioni limitate f su un intervallo I, in particolare, per le funzioni con potenza p-sima a variazione limitata su I è stimato il rango di convergenza puntuale della modificazione di tipo Bezier degli operatori discreti di Feller. Nel teorema principale è stato usato il modulo di variazione di Chanturiya.

Publié le : 2006-10-01
@article{BUMI_2006_8_9B_3_657_0,
     author = {Gra\.zyna Anio\l },
     title = {On the rate of convergence of the B\'ezier-type operators},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {657-666},
     zbl = {1182.41019},
     mrnumber = {2274118},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_657_0}
}
Anioł, Grażyna. On the rate of convergence of the Bézier-type operators. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 657-666. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_657_0/

[1] Aniol, G., On the rate of convergence of some discrete operators, Demonstratio Math., 27 (1994), 367-377. | Zbl 0817.41023

[2] Bezier, P., Numerical Control-Mathematics and Applications, Wiley, London1972.

[3] Chanturiya, Z.A., Modulus of variation of function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66. | Zbl 0295.26008

[4] Feller, W., An Introduction to Probability Theory and its Applications, II, Wiley, New York, 1966. | Zbl 0138.10207

[5] Guo, S. - Khan, M.K., On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory, 58 (1989), 90-101. | Zbl 0683.41030

[6] Heilmann, M., Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5:1 (1989), 105-127. | Zbl 0669.41014

[7] Pych-Taberska, P., On the rate of convergence of the Feller operators, Ann. Soc. Math. Pol., Commentat. Math., 31 (1991), 147-156. | Zbl 0751.60033

[8] Pych-Taberska, P., On the rate of convergence of the Bézier type operators, Funct. Approximatio, Comment. Math., 28 (2000), 201-209. | Zbl 0979.41011

[9] Pych-Taberska, P., Some properties of the Bézier-Kantorovich type operators, Approx. Theory, 123 (2003), 256-269. | Zbl 1029.41009

[10] Zeng, X.M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, II, J. Approx. Theory, 104 (2000), 330-344. | Zbl 0963.41011

[11] Zeng, X.M. - Piriou, A., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory, 95 (1998), 369-387. | Zbl 0918.41016