For bounded functions on an interval , in particular, for functions of bounded p-th power variation on there is estimated the rate of pointwise convergence of the Bezier-type modification of the discrete Feller operators. In the main theorem the Chanturiya modulus of variation is used.
Per le funzioni limitate su un intervallo , in particolare, per le funzioni con potenza p-sima a variazione limitata su è stimato il rango di convergenza puntuale della modificazione di tipo Bezier degli operatori discreti di Feller. Nel teorema principale è stato usato il modulo di variazione di Chanturiya.
@article{BUMI_2006_8_9B_3_657_0, author = {Gra\.zyna Anio\l }, title = {On the rate of convergence of the B\'ezier-type operators}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {657-666}, zbl = {1182.41019}, mrnumber = {2274118}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_657_0} }
Anioł, Grażyna. On the rate of convergence of the Bézier-type operators. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 657-666. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_657_0/
[1] On the rate of convergence of some discrete operators, Demonstratio Math., 27 (1994), 367-377. | Zbl 0817.41023
,[2]
, Numerical Control-Mathematics and Applications, Wiley, London1972.[3] Modulus of variation of function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66. | Zbl 0295.26008
,[4] II, Wiley, New York, 1966. | Zbl 0138.10207
, An Introduction to Probability Theory and its Applications,[5] On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory, 58 (1989), 90-101. | Zbl 0683.41030
- ,[6] Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5:1 (1989), 105-127. | Zbl 0669.41014
,[7] On the rate of convergence of the Feller operators, Ann. Soc. Math. Pol., Commentat. Math., 31 (1991), 147-156. | Zbl 0751.60033
,[8] On the rate of convergence of the Bézier type operators, Funct. Approximatio, Comment. Math., 28 (2000), 201-209. | Zbl 0979.41011
,[9] Some properties of the Bézier-Kantorovich type operators, Approx. Theory, 123 (2003), 256-269. | Zbl 1029.41009
,[10] On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, II, J. Approx. Theory, 104 (2000), 330-344. | Zbl 0963.41011
,[11] On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory, 95 (1998), 369-387. | Zbl 0918.41016
- ,