We propose a unified approach, based on methods from microlocal analysis, for characterizing the hypoellipticity and the local solvability in and Gevrey classes of semilinear anisotropic partial differential operators with Gevrey nonlinear perturbations, in dimension . The conditions for our results are imposed on the sign of the lower order terms of the linear part of the operator, see Theorem 1.1 and Theorem 1.3 below.
In questo articolo viene proposto un approccio unificato, che si basa sulle tecniche dell'analisi microlocale, per caratterizzare sia l'ipoellitticità sia la risolubilità locale, in e nelle classi di Gevrey , di operatori alle derivate parziali anisotropi, in dimensione , i quali, vengono perturbati con non linearità di tipo Gevrey. Per ottenere questi risultati sono state imposte alcune condizioni sul segno dei termini di ordine inferiore della parte lineare dell'operatore, vedere Teorema 1.1 e Teorema 1.3.
@article{BUMI_2006_8_9B_3_583_0, author = {Giuseppe De Donno and Alessandro Oliaro}, title = {Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {583-610}, zbl = {1121.35029}, mrnumber = {2274114}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_583_0} }
De Donno, Giuseppe; Oliaro, Alessandro. Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 583-610. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_583_0/
[1] Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, Ann. Mat. Pura Appl., 4 182 (2003), no. 4, 409-455. | Zbl 1225.47077
- - ,[2] Nonlinear estimates in anisotropic Gevrey spaces, Pliska Stud. Math. Bulgar. 15 (2003), 149-160.
- ,[3] On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations14 (1989), 1-25. | Zbl 0668.35002
,[4] On local solvability of linear partial differential operators with multiple characteristics, J. Differential Equations, 81 (1989), 275-293. | Zbl 0701.35002
,[5] Local solvability and hypoellipticity in Gevrey classes for semilinear anisotropic partial differential equations, Trans. Amer. Math. Soc., 355 (2003), no. 8, 3405-3432. | Zbl 1039.35151
- ,[6] Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Sem. Mat. Univ. Politec. Torino, 58 (2000), no. 4, 435-448 (2003). | Zbl 1072.35214
- ,[7] Inhomogeneuos paramultiplication and microlocal singularities for semilinear equations, Boll. Un. Mat. Ital. B. (7), 10 (1996), 885-902. | Zbl 0888.35145
,[8] Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara Sez. VII, (N.S.) 41, (1996), 199-209, suppl. | Zbl 0883.35038
,[9] On the critical index of Gevrey solvability for some linear partial differential equations, Workshop on Partial Differential Equations (Ferrara 1999), Ann. Univ. Ferrara Sez. VII (N.S.), suppl., 45 (2000), 139-153. | Zbl 0986.35002
,[10] Local Solvability of Semilinear Partial Differential Equations, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 35 (1989), 147-154. | Zbl 0733.35028
- ,[11] Critical Gevrey Index for Hypoellipticity of Parabolic Equations and Newton Polygones, Ann. Mat. Pura Appl., 170 (1996), 103-131. | Zbl 0874.35029
, - ,[12] Gevrey solvability for semilinear partial differential equations with multiple characterisitics, Boll. Un. Mat. Ital., B (8) 2 (1999), 65-120. | Zbl 0924.35030
,[13] I, II, III, IV, Springer-Verlag, Berlin, 1983-85.
, The analysis of linear partial differential operators, vol.[14] On the local solvability of semilinear equations, Comm. in Partial Differential Equations, 20 (1995), 1777-1789. | Zbl 0838.35003
- ,[15] Majorations et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 214-217. | Zbl 0165.43702
- ,[16] Opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 28-31. | Zbl 0176.39803
- ,[17] Hypoelliptic operators in Gevrey classes, in ``Recent developments in hyperbolic equations'' , , (London) ( , ed.), Longman, 1988, 115-134. | Zbl 0733.35029
- ,[18] Ultradistributions, I: Structure theorems and a characterisation; II: The kernel theorem and ultradistributions with support in a submanifold; III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 25-105, 24 (1977), 607-628, 29 (1982), 653-717.
,[19] Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital., Sez. IV, 3-C (1984), 133-223. | Zbl 0557.35131
- ,[20] Linear partial differential equations with multiple involutive characteristics, in ``Microlocal analysis and spectral theory'' (Dordrecht) ( , ed.), Kluwer, 1997, 1-38. | Zbl 0884.35184
- ,[21] Anisotropic operators with characteristics of constant multiplicity, Math. Nachr., 124 (1985), 199-216. | Zbl 0596.35010
,[22] Stability and instability for Gevrey quasi-convex near integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002), 199-275. | Zbl 1086.37031
- ,[23] Local Solvability for Semilinear Anisotropic Partial Differential Equations, Annali Mat. Pura Appl. (4) 179 (2001), 229-262. | Zbl 1220.35005
, ,[24] | Zbl 0888.35001
- , Partial differential equations with multiple characteristics, Wiley-VCH, Berlin, 1997.[25] Microlocal properties of a class of pseudodifferential operators with double involutive characteristics, Partial differential equations (Warsaw, 1984), Banach Center Publ., PWN, Warsaw, 19 (1987), 213-224.
,[26] Local solvability of some classes of linear differential operators with multiple characteristics, Ann. Univ. Ferrara, VII, Sc. Mat., 45 (1999), 263-274. | Zbl 0993.35025
,[27] Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica, 6 (1980), 169-183.
- ,[28] | Zbl 0869.35005
, Linear partial differential operators in Gevrey spaces, World Scientific, Singapore, 1993.[29] Ultra-distributions définies sur et sur certaines classes de variétés differentiables, J. Analyse Math., 101962/1963, 153-192. | Zbl 0122.34802
,[30]
, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.[31] The local solvability of equations of quasi-principal type, Mat. Sb. (N.S.)97 (139), no 4 (8) (1975), 503-516.
,[32] Singularities of solution of the cauchy problem for hyperbolic system in gevrey classes, Japan J. Math., 11 (1985), 157-201. | Zbl 0595.35071
,