Cyclic phenomena for composition operators on weighted Bergman spaces
Gori, Anna
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 529-543 / Harvested from Biblioteca Digitale Italiana di Matematica

In the present paper we give a generalization to the family of Bergman Spaces with weight G, AG2 of several results, obtained in [4] for the Hardy space H2, concerning the cyclic and hypercyclic behaviour of composition operators CW induced by a holomorphic self map φ of the open unit disc Δ.

In questo lavoro diamo una generalizzazione alla famiglia di Spazi di Bergman con peso G, AG2, di alcuni risultati ottenuti in [4] per lo spazio di Hardy H2. In particolare studiamo il comportamento ciclico e iperciclico, nello spazio AG2, di operatori di composizione indotti da una funzione olomorfa φ del disco unitario Δ in sé.

Publié le : 2006-10-01
@article{BUMI_2006_8_9B_3_529_0,
     author = {Anna Gori},
     title = {Cyclic phenomena for composition operators on weighted Bergman spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {529-543},
     zbl = {1150.47006},
     mrnumber = {2274110},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_529_0}
}
Gori, Anna. Cyclic phenomena for composition operators on weighted Bergman spaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 529-543. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_529_0/

[1] Akeroyd, J. - Khavinson, D. - Shapiro, H. S., Remarks concerning cyclic vectors in Hardy and Bergman Spaces, Mich. Math. J., 38 (1991), 191-205. | Zbl 0745.30047

[2] Akeroyd, J., Polynomials approximation in the mean with respect to harmonic measure on crescents, Mich. Math. J., 39 (1992), 35-40. | Zbl 0755.30033

[3] Bourdon, P., Density of the polynomials in Bergman spaces, Pacific J. Math., 130 (1987), 215-221. | Zbl 0602.30047

[4] Bourdon, P. - Shapiro, H. J., Chiclic phenomena for composition operators, Memoires of the Amer. Math. Soc., 125 (1997), 69-95.

[5] Cowen, C., Iteration and the solution of functional equations for functions analytic in the unit disc, Trans. Amer. Math. Soc., 265 (1981), 69-95. | Zbl 0476.30017

[6] Gallardo Gutierrez, E. A. - Montes-Rodriguez, A., The Role of the Spectrum in the Cyclic Behaviour of linear fractional Composition Operators (preprint). | Zbl 1054.47008

[7] Kriete, T. L., Kernel Functions and Composition Operators in Weighted Bergman Spaces, Contemporary Amer. Math. Soc., 213 (1998). | Zbl 0898.47028

[8] Maccluer, B. - Kriete, T., Composition Operators on Weighted Bergman Spaces, Indiana Math. J., 41 (1992), 755-788. | Zbl 0772.30043

[9] Maccluer, B. - Shapiro, H. J., Angular derivatives and compact composition operators on Hardy and Bergman spaces, Canadian J. Math., 38 (1986), 878-906. | Zbl 0608.30050

[10] Mergelyan, S. N., On the completeness of systems of analytic functions, AMS Transl., 19 (1962), 109-166. | Zbl 0122.31601

[11] Shapiro, H. J., Composition Operators and Classical Function Theory, Springer-Verlag, 1993. | Zbl 0791.30033

[12] Shields, A., Weighted Shift operators and analytic function theory, Topics in Operator Theory, Mathematical Surveys, 13Amer. Math. Soc, providence R.I (1974).