In the present paper we give a generalization to the family of Bergman Spaces with weight , of several results, obtained in [4] for the Hardy space , concerning the cyclic and hypercyclic behaviour of composition operators CW induced by a holomorphic self map of the open unit disc .
In questo lavoro diamo una generalizzazione alla famiglia di Spazi di Bergman con peso , , di alcuni risultati ottenuti in [4] per lo spazio di Hardy . In particolare studiamo il comportamento ciclico e iperciclico, nello spazio , di operatori di composizione indotti da una funzione olomorfa del disco unitario in sé.
@article{BUMI_2006_8_9B_3_529_0, author = {Anna Gori}, title = {Cyclic phenomena for composition operators on weighted Bergman spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {529-543}, zbl = {1150.47006}, mrnumber = {2274110}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_3_529_0} }
Gori, Anna. Cyclic phenomena for composition operators on weighted Bergman spaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 529-543. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_3_529_0/
[1] Remarks concerning cyclic vectors in Hardy and Bergman Spaces, Mich. Math. J., 38 (1991), 191-205. | Zbl 0745.30047
- - ,[2] Polynomials approximation in the mean with respect to harmonic measure on crescents, Mich. Math. J., 39 (1992), 35-40. | Zbl 0755.30033
,[3] Density of the polynomials in Bergman spaces, Pacific J. Math., 130 (1987), 215-221. | Zbl 0602.30047
,[4] Chiclic phenomena for composition operators, Memoires of the Amer. Math. Soc., 125 (1997), 69-95.
- ,[5] Iteration and the solution of functional equations for functions analytic in the unit disc, Trans. Amer. Math. Soc., 265 (1981), 69-95. | Zbl 0476.30017
,[6] The Role of the Spectrum in the Cyclic Behaviour of linear fractional Composition Operators (preprint). | Zbl 1054.47008
- ,[7] 213 (1998). | Zbl 0898.47028
, Kernel Functions and Composition Operators in Weighted Bergman Spaces, Contemporary Amer. Math. Soc.,[8] Composition Operators on Weighted Bergman Spaces, Indiana Math. J., 41 (1992), 755-788. | Zbl 0772.30043
- ,[9] Angular derivatives and compact composition operators on Hardy and Bergman spaces, Canadian J. Math., 38 (1986), 878-906. | Zbl 0608.30050
- ,[10] On the completeness of systems of analytic functions, AMS Transl., 19 (1962), 109-166. | Zbl 0122.31601
,[11] | Zbl 0791.30033
, Composition Operators and Classical Function Theory, Springer-Verlag, 1993.[12] Weighted Shift operators and analytic function theory, Topics in Operator Theory, Mathematical Surveys, 13Amer. Math. Soc, providence R.I (1974).
,