An explicit topological description of ω-limit sets of continuous flows on compact surfaces without boundary is given. Some of the results can be extended to manifolds of larger dimensions.
Si dà una descrizione topologica esplicita degli insiemi ω-limite dei flussi continui in superfici compatte senza frontiera. Alcuni risultati si possono estendere a varietà di dimensione maggiore.
@article{BUMI_2006_8_9B_2_515_0, author = {V\'\i ctor Jim\'enez L\'opez and Gabriel Soler L\'opez}, title = {A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {515-521}, zbl = {1178.37015}, mrnumber = {2233149}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_515_0} }
Jiménez López, Víctor; Soler López, Gabriel. A Characterization of $\omega$-Limit Sets for Continuous Flows on Surfaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 515-521. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_515_0/
[1] Flows on closed surfaces and behavior of trajectories lifted to the universal covering plane, J. Dynam. Control Systems, 1 (1995), 125-138. | Zbl 0995.37014
,[2] A characterization of the ω-limit sets of planar continuous dynamical sistems, J. Differential Equations, 145 (1996), 469-488.
- ,[3] A topological characterization of ω-limit sets for continuous flows on the projective plane, Discrete Contin. Dynam. Systems, Added Volume (2001), 254-258. | Zbl 1301.37028
- ,[4] A characterization of ω-limit sets of nonrecurrent orbits in , Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13 (2003), 1727-1732. | Zbl 1056.37007
- ,[5] Accumulation points of nonrecurrent orbits of surface flows, Topology Appl., 137 (2004), 187-194.
- ,[6] Transitive flows on manifolds, Rev. Mat. Iberoamericana, 20 (2004), 107-130.
- ,[7] Some examples of transitive smooth flows on differentiable manifolds, J. London Math. Soc., 37 (1988), 552-568. | Zbl 0634.58025
- ,[8] Transitive flows on two-dimensional manifolds, J. London Math. Soc., 37 (1988), 569-576. | Zbl 0634.58026
- ,[9] Accumulation points of flows on the Klein bottle, Discrete Contin. Dynam. Systems, 9 (2003), 497-503.
,[10] ω-limit sets from nonrecurrent points of flows on manifold, Topology Appl., 153 (2005), 963-974. | Zbl 1085.37013
,[11] Caracterización topólogica de conjuntos ω-límite sobre variedades, PhD. Thesis, Universidad de Murcia, 2005.
,[12] On the limiting behavior of an unbounded integral curve, Moskov. Gos. Univ. Uč. Zap., 155, Mat. 5 (1952), 94-136 (in Russian).
,