We fix a prime and let be an integer such that ; let be a newform supercuspidal of fixed type at and special at a finite set of primes. For an indefinite quaternion algebra over , of discriminant dividing the level of , there is a local quaternionic Hecke algebra associated to . The algebra acts on a module coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, is the universal deformation ring of a global Galois deformation problem associated to . Moreover is free of rank 2 over . If occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.
-- Fissiamo un primo e un intero tale che ; sia una forma nuova supercuspidale di tipo fissato a e speciale in un insieme finito di primi. Per un'algebra di quaternioni indefinita su , di discriminante che divide il livello di , associamo a un'algebra di Hecke locale quaternionica . L'algebra agisce su un modulo proveniente dalla coomologia di una curva di Shimura. Applicando il criterio di Taylor-Wiles e il teorema di Savitt, rivediamo come l'anello di deformazione universale di un problema di deformazione globale di Galois associato a . In particolare Mf è libero di rango 2 su . Nel caso particolare in cui sia di livello e minimale, come conseguenza dei nostri risultati e grazie al lemma di Ihara classico, proviamo un teorema di alzamento di livello e un risultato sugli ideali di congruenza. L'estensione al caso non minimale è un problema aperto.
@article{BUMI_2006_8_9B_2_507_0, author = {Miriam Ciavarella}, title = {Congruences between modular forms and related modules}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {507-514}, zbl = {1178.11044}, mrnumber = {2233148}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_507_0} }
Ciavarella, Miriam. Congruences between modular forms and related modules. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 507-514. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_507_0/
[1] On the modularity of elliptic curves over , J.A.M.S., 14 (2001), 843-939. | MR 1839918 | Zbl 0982.11033
- - - ,[2] Multiplicités modulaires et représentations de et de en , Duke Math. J., 115, no. 2 (2002), 205-310, With an appendix by Guy Henniart. | MR 1944572
- ,[3] Eisenstein ideal and reducible λ-adic representations unramified outside a finite number of primes, Bollettino U.M.I. (8) 9-B (2006), to appear. | MR 2274122 | Zbl 1177.11042
,[4] Modularity of certain Potentially Barsotti-Tate Galois Representations, Journal of the American Mathematical Society, Vol. 12, Number 2 (April 1999), 521-567. | MR 1639612 | Zbl 0923.11085
- - ,[5] Fermat's Last Theorem, Current Developments in Mathematics, 1995, International Press, 1-154. | MR 1474977 | Zbl 0877.11035
- - ,[6] Lifting modular mod representations, Duke Math. J., 74 (1994), 253-269. | MR 1272977 | Zbl 0809.11025
- ,[7] Non-optimal levels of mod modular representations, Invent. Math., 115 (1994), 435-462. | MR 1262939 | Zbl 0847.11025
- ,[8] The Taylor-Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379-391. | MR 1440309 | Zbl 0916.11037
,[9] Geometric Galois representation, Conference on Elliptic Curves and Modular Forms (Hong Kong, 1993), International Press, 41-78. | MR 1363495
- ,[10] Congruences of Cusp Forms and Special Values of their Zeta Functions, Inventiones Mathematicae, 63 (1981), 225-261. | MR 610538 | Zbl 0459.10018
,[11] On p-adic Hecke algebras for over totally reals fields, Ann. of Math., 128 (1988), 295-384. | MR 960949 | Zbl 0658.10034
,[12] 114, Springer 1970. | MR 401654
- , Automorphic forms on , Lecture Notes Math., vol[13] Modular Forms and -adic representation, Modular Functions of One Variable II, 1972, vol. 349 of Lecture Notes Math., Springer, 361-500. | MR 354617
,[14] Deforming Galois Representations, Galois Groups over , Ed. , Springer1989. | MR 1012172 | Zbl 0714.11076
,[15] A canonical map between Hecke algebras, Bollettino U.M.I. (8) 2-B (1999), 429-452. | MR 1706552 | Zbl 0933.11023
- ,[16] Mod p Hecke Operators and Congruences Between Modular Forms, Inventiones Mathematicae, 71 (1983), 193-205. | MR 688264 | Zbl 0508.10018
,[17] On a conjecture of Conrad, Diamond, and Taylor, Peprint, April 19, 2004.
,[18] Modular forms and p-adic Hodge theory, Inventiones Mathematcae, 129 (1997), 607-620. | Zbl 0877.11034
,[19] Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), 553-572. | Zbl 0823.11030
- ,[20] A Taylor-Wiles System for Quaternionic Hecke Algebras, Compositio Mathematica, 137 (2003), 23-47. | Zbl 1028.11036
,[21] Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551. | Zbl 0823.11029
,