Congruences between modular forms and related modules
Ciavarella, Miriam
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 507-514 / Harvested from Biblioteca Digitale Italiana di Matematica

We fix a prime and let M be an integer such that M; let fS2(Γ1(M2)) be a newform supercuspidal of fixed type at and special at a finite set of primes. For an indefinite quaternion algebra over Q, of discriminant dividing the level of f, there is a local quaternionic Hecke algebra T associated to f. The algebra T acts on a module Mf coming from the cohomology of a Shimura curve. Applying the Taylor-Wiles criterion and a recent Savitt's theorem, T is the universal deformation ring of a global Galois deformation problem associated to ρ¯f. Moreover Mf is free of rank 2 over T. If f occurs at minimal level, as a consequence of our results and by the classical Ihara's lemma, we prove a theorem of raising the level and a result about congruence ideals. The extension of this results to the non minimal case is an open problem.

-- Fissiamo un primo e M un intero tale che M; sia fS2(Γ1(M2)) una forma nuova supercuspidale di tipo fissato a e speciale in un insieme finito di primi. Per un'algebra di quaternioni indefinita su Q, di discriminante che divide il livello di f, associamo a f un'algebra di Hecke locale quaternionica T. L'algebra T agisce su un modulo Mf proveniente dalla coomologia di una curva di Shimura. Applicando il criterio di Taylor-Wiles e il teorema di Savitt, rivediamo T come l'anello di deformazione universale di un problema di deformazione globale di Galois associato a ρ¯f. In particolare MfMf è libero di rango 2 su T. Nel caso particolare in cui f sia di livello e minimale, come conseguenza dei nostri risultati e grazie al lemma di Ihara classico, proviamo un teorema di alzamento di livello e un risultato sugli ideali di congruenza. L'estensione al caso non minimale è un problema aperto.

Publié le : 2006-06-01
@article{BUMI_2006_8_9B_2_507_0,
     author = {Miriam Ciavarella},
     title = {Congruences between modular forms and related modules},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {507-514},
     zbl = {1178.11044},
     mrnumber = {2233148},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_507_0}
}
Ciavarella, Miriam. Congruences between modular forms and related modules. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 507-514. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_507_0/

[1] Breuil, C. - Conrad, B. - Diamond, F. - Taylor, R., On the modularity of elliptic curves over Q, J.A.M.S., 14 (2001), 843-939. | MR 1839918 | Zbl 0982.11033

[2] Breuil, C. - Mézard, A., Multiplicités modulaires et représentations de GL2(Zp) et de Gal(Q¯p/Qp) en =p, Duke Math. J., 115, no. 2 (2002), 205-310, With an appendix by Guy Henniart. | MR 1944572

[3] Ciavarella, M., Eisenstein ideal and reducible λ-adic representations unramified outside a finite number of primes, Bollettino U.M.I. (8) 9-B (2006), to appear. | MR 2274122 | Zbl 1177.11042

[4] Conrad, B. - Diamond, F. - Taylor, R., Modularity of certain Potentially Barsotti-Tate Galois Representations, Journal of the American Mathematical Society, Vol. 12, Number 2 (April 1999), 521-567. | MR 1639612 | Zbl 0923.11085

[5] Darmon, H. - Diamond, F. - Taylor, R., Fermat's Last Theorem, Current Developments in Mathematics, 1995, International Press, 1-154. | MR 1474977 | Zbl 0877.11035

[6] Diamond, F. - Taylor, R., Lifting modular mod representations, Duke Math. J., 74 (1994), 253-269. | MR 1272977 | Zbl 0809.11025

[7] Diamond, F. - Taylor, R., Non-optimal levels of mod modular representations, Invent. Math., 115 (1994), 435-462. | MR 1262939 | Zbl 0847.11025

[8] Diamond, F., The Taylor-Wiles construction and multiplicity one, Invent. Math., 128 (1997), 379-391. | MR 1440309 | Zbl 0916.11037

[9] Fontaine, J.-M. - Mazur, B., Geometric Galois representation, Conference on Elliptic Curves and Modular Forms (Hong Kong, 1993), International Press, 41-78. | MR 1363495

[10] Hida, H., Congruences of Cusp Forms and Special Values of their Zeta Functions, Inventiones Mathematicae, 63 (1981), 225-261. | MR 610538 | Zbl 0459.10018

[11] Hida, H., On p-adic Hecke algebras for GL2 over totally reals fields, Ann. of Math., 128 (1988), 295-384. | MR 960949 | Zbl 0658.10034

[12] Jacquet, H. - Langlands, R., Automorphic forms on GL2, Lecture Notes Math., vol 114, Springer 1970. | MR 401654

[13] Langlands, R., Modular Forms and -adic representation, Modular Functions of One Variable II, 1972, vol. 349 of Lecture Notes Math., Springer, 361-500. | MR 354617

[14] Mazur, B., Deforming Galois Representations, Galois Groups over Q, Ed. IharaRibetSerre, Springer1989. | MR 1012172 | Zbl 0714.11076

[15] Mori, A. - Terracini, L., A canonical map between Hecke algebras, Bollettino U.M.I. (8) 2-B (1999), 429-452. | MR 1706552 | Zbl 0933.11023

[16] Ribet, K. A., Mod p Hecke Operators and Congruences Between Modular Forms, Inventiones Mathematicae, 71 (1983), 193-205. | MR 688264 | Zbl 0508.10018

[17] Savitt, D., On a conjecture of Conrad, Diamond, and Taylor, Peprint, April 19, 2004.

[18] Saito, T., Modular forms and p-adic Hodge theory, Inventiones Mathematcae, 129 (1997), 607-620. | Zbl 0877.11034

[19] Taylor, R. - Wiles, A., Ring-theoretic properties of certain Hecke algebras, Ann. Math., 141 (1995), 553-572. | Zbl 0823.11030

[20] Terracini, L., A Taylor-Wiles System for Quaternionic Hecke Algebras, Compositio Mathematica, 137 (2003), 23-47. | Zbl 1028.11036

[21] Wiles, A., Modular elliptic curves and Fermat last Theorem, Ann. of Math., 141 (1995), 443-551. | Zbl 0823.11029