Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces
Di Fazio, Giuseppe ; Zamboni, Pietro
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 485-504 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove Harnack inequality for weak solutions to quasilinear subelliptic equation of the following kind J=1mXj*Aj(x,u(x),Xu(x))+B(x,u(x),Xu(x))=0, where X1,,Xm are a system of non commutative locally Lipschitz vector fields. As a consequence, the weak solutions of (*) are continuous.

In questa nota proviamo la disuguaglianza di Harnack per le soluzioni deboli di una equazione sub-ellittica quasilineare del tipo J=1mXj*Aj(x,u(x),Xu(x))+B(x,u(x),Xu(x))=0, dove X1,,Xm denotano un sistema non commutativo di campi vettoriali localmente lipschitziani. Come conseguenza otteniamo la continuità delle soluzioni deboli della (*).

Publié le : 2006-06-01
@article{BUMI_2006_8_9B_2_485_0,
     author = {Giuseppe Di Fazio and Pietro Zamboni},
     title = {Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {485-504},
     zbl = {1178.35163},
     mrnumber = {2233147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_485_0}
}
Di Fazio, Giuseppe; Zamboni, Pietro. Local regularity of solutions to quasilinear subelliptic equations in Carnot Caratheodory spaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 485-504. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_485_0/

[1] Buckley, S., Inequalities of John Nirenberg type in doubling spaces, J. Anal. Math., 79 (1999), 215-240. | MR 1749313 | Zbl 0990.46019

[2] Capogna, L. - Danielli, D. - Garofalo, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. P.D.E., 18 (1993), 1765-1794. | MR 1239930 | Zbl 0802.35024

[3] Chiarenza, F., Regularity for solutions of quasilinear elliptic equations under minimal assumptions, Potential Analysis, 4 (1995), 325-334. | MR 1354887 | Zbl 0838.35022

[4] Chiarenza, F. - Fabes, E. - Garofalo, N., Harnack's inequality for Schrödinger operators and continuity of solutions, Proc. A.M.S., 98 (1986), 415-425. | MR 857933 | Zbl 0626.35022

[5] Danielli, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 115 (1999), 387-413. | MR 1719837 | Zbl 0940.35057

[6] Danielli, D. - Garofalo, N. - Nhieu, D., Trace inequalities for Carnot-Caratheodory spaces and applications, Ann. Scuola Norm. Sup. Pisa, 4 (1998), 195-252. | MR 1664688 | Zbl 0938.46036

[7] Di Fazio, G. - Zamboni, P., A Fefferman-Poincaré type inequality for Carnot-Carathéodory vector fields, Proc. A.M.S., 130 (2002), 2655-2660. | MR 1900873 | Zbl 1031.46038

[8] Di Fazio, G. - Zamboni, P. Hölder continuity for quasilinear subelliptic equations in Carnot Caratheodory spaces, Math. Nachr. 272 (2004), 3-10. | MR 2079757 | Zbl 1149.35347

[9] Ladyzhenskaya, O.A. - Uralceva, N., Linear and quasilinear elliptic equations, Academic Press (1968).

[10] Lieberman, G., Sharp forms of Estimates for Subsolutions and Supersolutions of Quasilinear Elliptic Equations Involving Measures, Comm. P.D.E., 18 (1993), 1191-1212. | MR 1233190 | Zbl 0802.35041

[11] Ragusa, M.A. - Zamboni, P., Local regularity of solutions to quasilinear elliptic equations with general structure, Communications in Applied Analysis, 3 (1999), 131-147. | MR 1669745 | Zbl 0922.35050

[12] Rakotoson, J.M., Quasilinear equations and Spaces of Campanato-Morrey type, Comm. P.D.E., 16 (1991), 1155-1182. | MR 1116857 | Zbl 0827.35021

[13] Rakotoson, J.M. - Ziemer, W.P., Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. A. M. S., 319 (1990), 747-764. | MR 998128 | Zbl 0708.35023

[14] Serrin, J., Local behavior of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302. | MR 170096 | Zbl 0128.09101

[15] Serrin, J. - Zou, H., Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities, Acta Math., 189, n. 1 (2002), 79-142. | MR 1946918 | Zbl 1059.35040

[16] Zamboni, P., Harnack's inequality for quasilinear elliptic equations with coefficients in Morrey spaces, Rend. Sem. Mat. Univ. Padova, 89 (1993), 87-96. | MR 1229045 | Zbl 0802.35043

[17] Zamboni, P., Local boundedness of solutions of quasilinear elliptic equations with coefficients in Morrey spaces, Boll. Un. Mat. It., 8-B (1994), 985-997. | MR 1315830 | Zbl 0827.35040

[18] Zamboni, P., Local behavior of solutions of quasilinear elliptic equations with coefficients in Morrey Spaces, Rendiconti di Matematica, Serie VII, 15 (1995), 251-262. | MR 1339243 | Zbl 0832.35046

[19] Zamboni, P., Unique continuation for non-negative solutions of quasilinear elliptic equations, Bull. Austral. Math. Soc., 64 (2001), 149-156. | MR 1848087 | Zbl 0989.47037

[20] Zamboni, P.The Harnack inequality for quasilinear elliptic equations under minimal assumptions, Manuscripta Math., 102 (2000), 311-323. | MR 1777522 | Zbl 0954.35063