We attempt to generalize conductor degree's results, known in , to the case of 0-dimensional schemes of . In the first part of this paper, we consider the problem of characterizing the sequences generators's degrees of the conductor which are compatible with a fixed postulation (or Hilbert function) for a set of points in and we determine the conductor degree of every point in a -partial intersection. In addition, we define the separating degree of a point for a 0-dimensional subscheme of a smooth quadric and we give some results in case of special subschemes.
In questo lavoro generalizziamo alcuni risultati sui gradi del conduttore, noti in , al caso di schemi 0-dimensionali di . Nella prima parte consideriamo il problema di caratterizzare la sequenza dei gradi dei generatori del conduttore in accordo con una fissata funzione di Hilbert per un insieme di punti in e determiniamo il grado del conduttore di ogni punto in una -parziale intersezione. Inoltre diamo la definizione di separating degree di un punto per uno schema 0dimensionale su una quadrica liscia e proviamo dei risultati per esso nel caso di sottoschemi speciali.
@article{BUMI_2006_8_9B_2_397_0, author = {Lucia Marino}, title = {Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {397-421}, zbl = {1178.13007}, mrnumber = {2233144}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_397_0} }
Marino, Lucia. Conductor and separating degrees for sets of points in $\mathbb{P}^r$ and in $\mathbb{P}^1 \times \mathbb{P}^1$. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 397-421. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_397_0/
[1] Conductor Degree and Socle Degree, Le Matematiche, vol LVI- Fasc. I (2001), 129-148.
- - ,[2]
, Doctoral Thesis, Florence, 2003.[3] Cayley-Bacharach Schemes and their canonical modules, Transactions of the American Mathematical Society, vol 339 (1) (1993), 163-189. | Zbl 0793.14002
- - ,[4] The Hilbert function of a reduced k-algebra, J. Lond. Math. Soc. (2), 28 (1983), 443-452. | Zbl 0535.13012
- - ,[5] On the postulation of 0-dimensional subschemes on a smooth quadric, Pacific J. of Mathematics, 155 (1992), 251-282. | Zbl 0723.14035
- - ,[6] An alternative to the Hilbert Function for the Ideal of a Finite Set of Points in , to appear: Illinois Journ. of Math (28 pages). | Zbl 0943.13012
- - ,[7] A classification of arithmetically Cohen Macaulay varieties with given Hilbert Function, unpublished. | Zbl 0616.14026
- ,[8] | Zbl 0921.14033
, Introduction to Liaison Theory and Deficiency Modules, Birkhäuser, 1998.[9] Points in generic positon and conductors of curves with ordinary singularities, J. Lond. Math. Soc. (2), 24 (1981), 85-96. | Zbl 0492.14017
,[10]
, Personal communications.[11] Partial intersection and graded Betti numbers, to appear on Beiträge zur Algebra und Geometrie. | Zbl 1033.13004
- ,[12] N-type vectors and the Cayley-Bacharach property, Comm. in Alg.30 (8) (2002), 3891-3915. | Zbl 1095.13526
,