On the lower semicontinuity of supremal functionals defined on measures
Gori, Michele
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 327-369 / Harvested from Biblioteca Digitale Italiana di Matematica

In this paper we consider two particular classes of supremal functionals defined on Radon measures and we find necessary and sufficient conditions for their lower semicontinuity with respect to the weak* convergence. Some applications to the minimization of functionals defined on BV are presented.

In questo lavoro si considerano due particolari classi di funzionali supremali definiti sulle misure di Radon e si determinano alcune condizioni necessarie e sufficienti alla loro semicontinuità rispetto alla convergenza debole*. Vengono successivamente presentate alcune applicazioni di questi risultati alla minimizzazione di opportuni funzionali definiti su BV.

Publié le : 2006-06-01
@article{BUMI_2006_8_9B_2_327_0,
     author = {Michele Gori},
     title = {On the lower semicontinuity of supremal functionals defined on measures},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {327-369},
     zbl = {1178.49015},
     mrnumber = {2233142},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_327_0}
}
Gori, Michele. On the lower semicontinuity of supremal functionals defined on measures. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 327-369. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_327_0/

[1] Acerbi, E. - Buttazzo, G. - Prinari, N., The class of functionals which can be represented by a supremum, J. Convex Analysis, 9 (2002), 225-236. | Zbl 1012.49010

[2] Alicandro, R. - Braides, A. - Cicalese, M., L energies on discontinuous functions, Preprint.

[3] Ambrosio, L., Existence theory for a new class of variational problems, Arch. Rational Mech. Anal., 111 (1990), 291-322. | Zbl 0711.49064

[4] Ambrosio, L. - Buttazzo, G., Weak lower semicontinuous envelope of functions defined on a space of measures, Ann. Mat. pura appl., 150 (1988), 311-340. | Zbl 0648.49009

[5] Ambrosio, L. - Dal Maso, G., On the relaxation in BV(Ω,m) of quasi-convex integrals, J. Func. Anal., 109 (1992), 76-97. | Zbl 0769.49009

[6] Ambrosio, L. - Fusco, N. - Pallara, D., Functions of bounded variation and free discontinuity problems, Oxford University Press, Inc. New York, 2000. | Zbl 0957.49001

[7] Anzellotti, G. - Buttazzo, G. - Dal Maso, G., Dirichlet problem for demi-coercive functionals, Nonlinear Anal., 10 (1986), 603-613. | Zbl 0612.49008

[8] Aronsson, G. - Crandall, M.G. - Juutinen, P., A tour of the theory of absolutely minimizing functions, Bull. Amer. Math. Soc. (N.S.), 41 (2004),no. 4, 439-505. | Zbl 1150.35047

[9] Barron, E.N. - Jensen, R.R. - Wang, C.Y., Lower semicontinuity of L functionals, Ann. I. H. Poincaré - AN 18 (2001), 495-517. | Zbl 1034.49008

[10] Barron, E.N. - Liu, W., Calculus of variations in L, Appl. Math. Optim., 35 (1997), 237-263. | Zbl 0871.49017

[11] Bouchitté, G., Représentation intégrale de fonctionelles convexes sur un espace de measures, Ann. Univ. Ferrara, 18 (1987), 113-156. | Zbl 0721.49041

[12] Bouchitté, G. - Buttazzo, G., New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Anal., 15 (1990), 679-692. | Zbl 0736.49007

[13] Bouchitté, G. - Buttazzo, G., Integral representation of nonconvex functionals defined on measures, Ann. Inst. Henri Poincaré, 9 (1992), 101-117. | Zbl 0757.49012

[14] Bouchitté, G. - Buttazzo, G., Relaxation for a class of nonconvex functionals defined on measures, Ann. Inst. Henri Poincaré, 10 (1993), 345-361. | Zbl 0791.49016

[15] Bouchitté, G. - Valadier, M., Integral representation of convex functionals on a space of measures, J. funct. Analysis, 80 (1988), 398-420. | Zbl 0662.46009

[16] Buttazzo, G., Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Pitman Res. Notes Math. Ser., 207, Longman, Harlow (1989).

[17] De Giorgi, E. - Ambrosio, L., Un nuovo tipo di funzionale del calcolo delle variazioni, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend., 82 (1988), 199-210.

[18] De Giorgi, E. - Ambrosio, L. - Buttazzo, G., Integral representation and relaxation for functionals defined on measures, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur. Rend., 81 (1987), 7-13. | Zbl 0713.49018

[19] Evans, L.C. - Gariepy, R.F., Measure theory and fine properties of functions, Studies in advanced mathematics, CRC Press, Boca Raton, Florida, 1992.

[20] Giusti, E., Minimal surfaces and functions of bounded variation, Birkhäuser, Basel, 1984. | Zbl 0545.49018

[21] Goffman, C. - Serrin, J., Sublinear functions of measure and variational integrals, Duke Math J., 31 (1964), 159-178. | Zbl 0123.09804

[22] Gori, M., On the definition on BV of a supremal functional, Preprint n. 2.449.1417 (October 2002) Università di Pisa.

[23] Gori, M. - Maggi, F., On the lower semicontinuity of supremal functionals, ESAIM: COCV., 9 (2003), 135-143. | Zbl 1066.49010

[24] Gori, M. - Maggi, F., The common root of the geometric conditions in Serrin's lower semicontinuity theorem, to appear in Annali Mat. pura appl. | Zbl 1164.49004

[25] Jensen, R., Uniqueness of Lipchitz extensions: minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51-74. | Zbl 0789.35008

[26] Rockafellar, R.T. - Wets, R.J-B., Variational Analysis, Die Grundlehren der mathematischen Wissenschaften 317, Springer-Verlag, Berlin, 1998.

[27] Serrin, J., On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc., 101 (1961), 139-167. | Zbl 0102.04601