Cohomology of Tango bundle on 5
Faenzi, Daniele
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 319-326 / Harvested from Biblioteca Digitale Italiana di Matematica

The Tango bundle T is defined as the pull-back of the Cayley bundle over a smooth quadric Q5 in 6 via a map f existing only in characteristic 2 and factorizing the Frobenius φ. The cohomology of T is computed in terms of SC, φ*(C), Sym2(C) and C, which we handle with Borel-Bott-Weil theorem.

-- Il fibrato di Tango è definito come pull-back del fibrato di Cayley C su una e quadrica liscia Q5 in 6 attraverso una funzione f definita in caratteristica 2 che fattorizza il morfismo di Frobenius φ. La coomologia di T è calcolata in termini di SC, φ*(C), Sym2(C) e C, che si studiano con il teorema di Borel-Bott-Weil.

Publié le : 2006-06-01
@article{BUMI_2006_8_9B_2_319_0,
     author = {Daniele Faenzi},
     title = {Cohomology of Tango bundle on $\mathbb{P}^5$},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {319-326},
     zbl = {1178.14011},
     mrnumber = {2233141},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_319_0}
}
Faenzi, Daniele. Cohomology of Tango bundle on $\mathbb{P}^5$. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 319-326. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_319_0/

[Bea00] Beauville, Arnaud, Determinantal hypersurfaces, Michigan Math. J.48 (2000), 39-64.

[BGS87] Buchweitz, Ragnar-Olaf - Greuel, Gert-Martin - Schreyer, Frank-Olaf, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182.

[DMS92] Decker, Wolfram - Manolache, Nicolae - Schreyer, Frank-Olaf, Geometry of the Horrocks bundle on 5, Complex projective geometry (Trieste, 1989/ Bergen, 1989), London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 128-148. | Zbl 0774.14013

[Fae03] Faenzi, Daniele, A Geometric Construction of Tango Bundle on 5, Kodai Mathematical Journal27 (2004), no. 1, 1-6. | Zbl 1093.14506

[GS] Grayson, Daniel R. - Stillman, Michael E., Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.

[Hor78] Horrocks, Geoffrey, Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2) 18 (1978), no. 1, 15-27. | Zbl 0388.14009

[Jan87] Jantzen, Jens Carsten, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press Inc., Boston, MA, 1987. | Zbl 0654.20039

[Kap86] Kapranov, Mikhail M., Derived category of coherent bundles on a quadric, Funktsional. Anal. i Prilozhen.20 (1986), no. 2, 67; English translation in Funct. Anal. Appl. 20 (1986), 141-142.

[Nag62] Nagata, Masayoshi, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ.1 (1961/1962), 87-99. | Zbl 0106.25201

[Ott90] Ottaviani, Giorgio, On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 1, 87-100. | Zbl 0722.14006

[Tan76] Tango, Hiroshi, On morphisms from projective space Pn to the Grassmann variety Gr(n,d), J. Math. Kyoto Univ.16 (1976), no. 1, 201-207. | Zbl 0326.14015