The Tango bundle is defined as the pull-back of the Cayley bundle over a smooth quadric in via a map existing only in characteristic 2 and factorizing the Frobenius . The cohomology of is computed in terms of , , and , which we handle with Borel-Bott-Weil theorem.
-- Il fibrato di Tango è definito come pull-back del fibrato di Cayley su una e quadrica liscia in attraverso una funzione definita in caratteristica 2 che fattorizza il morfismo di Frobenius . La coomologia di è calcolata in termini di , , e , che si studiano con il teorema di Borel-Bott-Weil.
@article{BUMI_2006_8_9B_2_319_0, author = {Daniele Faenzi}, title = {Cohomology of Tango bundle on $\mathbb{P}^5$}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {319-326}, zbl = {1178.14011}, mrnumber = {2233141}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_319_0} }
Faenzi, Daniele. Cohomology of Tango bundle on $\mathbb{P}^5$. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 319-326. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_319_0/
[Bea00] Determinantal hypersurfaces, Michigan Math. J.48 (2000), 39-64.
,[BGS87] Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math. 88 (1987), no. 1, 165-182.
- - ,[DMS92] Geometry of the Horrocks bundle on , Complex projective geometry (Trieste, 1989/ Bergen, 1989), London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 128-148. | Zbl 0774.14013
- - ,[Fae03] A Geometric Construction of Tango Bundle on , Kodai Mathematical Journal27 (2004), no. 1, 1-6. | Zbl 1093.14506
,[GS] Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- ,[Hor78] Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2) 18 (1978), no. 1, 15-27. | Zbl 0388.14009
,[Jan87] 131, Academic Press Inc., Boston, MA, 1987. | Zbl 0654.20039
, Representations of algebraic groups, Pure and Applied Mathematics, vol.[Kap86] Derived category of coherent bundles on a quadric, Funktsional. Anal. i Prilozhen.20 (1986), no. 2, 67; English translation in Funct. Anal. Appl. 20 (1986), 141-142.
,[Nag62] Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ.1 (1961/1962), 87-99. | Zbl 0106.25201
,[Ott90] On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 1, 87-100. | Zbl 0722.14006
,[Tan76] On morphisms from projective space to the Grassmann variety , J. Math. Kyoto Univ.16 (1976), no. 1, 201-207. | Zbl 0326.14015
,