Holomorphic vector bundles on certain holomorphically convex complex manifolds
Ballico, Edoardo
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 261-265 / Harvested from Biblioteca Digitale Italiana di Matematica

Here we prove the existence of non-trivial holomorphic vector bundles on every 0-convex but not Stein complex manifold and on certain classes of holomorphically convex complex manifolds.

Qui proviamo l'esistenza di fibrati vettoriali olomorfi non triviali su ogni varietà complessa 0-convessa ma non Stein e su certe classi di varietà complesse olomorficamente convesse.

Publié le : 2006-06-01
@article{BUMI_2006_8_9B_2_261_0,
     author = {Edoardo Ballico},
     title = {Holomorphic vector bundles on certain holomorphically convex complex manifolds},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {261-265},
     zbl = {1178.14008},
     mrnumber = {2233136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_261_0}
}
Ballico, Edoardo. Holomorphic vector bundles on certain holomorphically convex complex manifolds. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 261-265. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_261_0/

[1] Andreotti, A. and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | Zbl 0106.05501

[2] Banica, C. and Le Potier, J., Sur l'existence des fibrés holomorphes sur une surface non-algebrique, J. Reine Angew. Math. 378 (1987), 1-31. | Zbl 0624.32017

[3] Bingener, J., Über formale komplexe Raume, Manuscripta Math.24 (1978), 253-293.

[4] Coltoiu, M., On the Oka-Grauert principle for 1-convex manifolds, Math. Ann.310 (1998), 561-569. | Zbl 0902.32011

[5] Flenner, H., Extendability of differential forms on non-isolated singularities, Invent. Math.94 (1988), 317-326. | Zbl 0658.14009

[6] Henkin, G. and Leiterer, J., The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93. | Zbl 0955.32019

[7] Malgrange, B., Faisceaux sur les variétés analytique-reélles, Bull. Soc. Math. France85 (1957), 231-237.

[8] Samelson, H., Notes on Lie Algebras, Universitext, Springer, 1990. | Zbl 0708.17005

[9] Siu, Y.-T., Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc.143 (1969), 77-94. | Zbl 0186.40404

[10] Winkelmann, J., Every compact complex manifold admits a holomorphic vector bundle, Revue Roum. Math. Pures et Appl.38 (1993), 743-744. | Zbl 0813.32025

[11] Winkelmann, J., Complex analytic geometry of complex parallelizable manifolds, Mémoires Soc. Math. France72-73, 1998. | Zbl 0918.32015