Here we prove the existence of non-trivial holomorphic vector bundles on every 0-convex but not Stein complex manifold and on certain classes of holomorphically convex complex manifolds.
Qui proviamo l'esistenza di fibrati vettoriali olomorfi non triviali su ogni varietà complessa 0-convessa ma non Stein e su certe classi di varietà complesse olomorficamente convesse.
@article{BUMI_2006_8_9B_2_261_0,
author = {Edoardo Ballico},
title = {Holomorphic vector bundles on certain holomorphically convex complex manifolds},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {9-A},
year = {2006},
pages = {261-265},
zbl = {1178.14008},
mrnumber = {2233136},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_2_261_0}
}
Ballico, Edoardo. Holomorphic vector bundles on certain holomorphically convex complex manifolds. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 261-265. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_2_261_0/
[1] and , Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193-259. | Zbl 0106.05501
[2] and , Sur l'existence des fibrés holomorphes sur une surface non-algebrique, J. Reine Angew. Math. 378 (1987), 1-31. | Zbl 0624.32017
[3] , Über formale komplexe Raume, Manuscripta Math.24 (1978), 253-293.
[4] , On the Oka-Grauert principle for 1-convex manifolds, Math. Ann.310 (1998), 561-569. | Zbl 0902.32011
[5] , Extendability of differential forms on non-isolated singularities, Invent. Math.94 (1988), 317-326. | Zbl 0658.14009
[6] and , The Oka-Grauert principle without induction over the base dimension, Math. Ann. 311 (1998), 71-93. | Zbl 0955.32019
[7] , Faisceaux sur les variétés analytique-reélles, Bull. Soc. Math. France85 (1957), 231-237.
[8] , Notes on Lie Algebras, Universitext, Springer, 1990. | Zbl 0708.17005
[9] , Analytic sheaf cohomology groups of dimension n of n-dimensional complex spaces, Trans. Amer. Math. Soc.143 (1969), 77-94. | Zbl 0186.40404
[10] , Every compact complex manifold admits a holomorphic vector bundle, Revue Roum. Math. Pures et Appl.38 (1993), 743-744. | Zbl 0813.32025
[11] , Complex analytic geometry of complex parallelizable manifolds, Mémoires Soc. Math. France72-73, 1998. | Zbl 0918.32015