We study a one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal conductivity with a constant temperature or a heat flux condition of the type () at the fixed face . We obtain in both cases sufficient conditions for data in order to have a parametric representation of the solution of the similarity type for with an arbitrary positive time. These explicit solutions are obtained through the unique solution of an integral equation with the time as a parameter.
Si studia un problema di Stefan a una fase per un materiale semi-infinito con un coefficiente di conduttività termica dipendente dalla temperatura e con una condizione di temperatura costante o un flusso di calore del tipo () sulla faccia fissa . Si ottengono, in entrambi i casi, condizioni sufficienti per i dati in modo da avere una rappresentazione parametrica della soluzione di tipo similarità per con un tempo positivo arbitrario. Queste soluzioni esplicite sono ottenute attraverso l’unica soluzione di una equazione integrale dove il tempo è un parametro.
@article{BUMI_2006_8_9B_1_79_0, author = {Mar\'\i a F. Natale and Domingo A. Tarzia}, title = {Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {79-99}, zbl = {1118.80005}, mrnumber = {2204902}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_79_0} }
Natale, María F.; Tarzia, Domingo A. Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 79-99. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_79_0/
[1]
- , Mathematical modeling of melting and freezing processes, Hemisphere - Taylor & Francis, Washington (1983).[2] | MR 1702131
- - (EDS.), Free Boundary Problems: Theory and Applications, CRC Press, Boca Raton (1999).[3] An asymptotic solution for short-time transient heat conductionbetween two similar contacting bodies, Int. J. Heat Mass Transfer, 32, No 5 (1989),943-949.
,[4] Exact solutions for water infiltration with an arbitrary surface flux or nonlinear solute adsorption, Water Resources Research, 27, No 10 (1991), 2667-2680.
- ,[5] On the remarkable nonlinear diffusion equation, J. Math. Phys., 21 (1980), 1019-1023. | MR 574874 | Zbl 0448.35027
- ,[6] Determination of unknown thermal coefficients for Storm’s-type materials through a phase-change process, Int. J.Non-Linear Mech., 34 (1999), 324-340. | MR 1658930
- - ,[7] Non-integrability of non-linear diffusion-convection equationsin two spatial dimensions, J. Phys. A: Math. Gen., 19 (1986), 1245-1257. | MR 844454 | Zbl 0617.35122
,[8] Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys., 29 (1988), 622-627. | MR 931465 | Zbl 0651.76041
,[9] | MR 747979 | Zbl 0567.35001
, The one-dimensional heat equation, Addison - Wesley, Menlo Park (1984).[10] | MR 959730 | Zbl 0972.80500
- , Conduction of heat in solids, Oxford University Press, London (1959).[11] 281, Longman, Essex (1993). | MR 1216392
- (EDS.), Free boundary problems involving solids, Pitman Research Notes in Mathematics Series[12] Liquid phase mass transfer coefficients for bubbles growing in a pressure field: a simplified analysis, Int. Comm. Heat Mass Transfer,27, No 1 (2000), 99-108.
,[13] | MR 776227 | Zbl 0547.35001
, Free and moving boundary problems, Clarendon Press, Oxford (1984).[14] 323, Longman, Essex (1995).
- - - (Eds.), Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series[15] 1224, Springer Verlag, Berlin (1986). | MR 877985
- (Eds.), Nonlinear diffusion problems, Lecture Notes in Math., N.[16] On the exactly solvable equation occurring in two-phase flow in porous media, SIAM J. Appl. Math., 42, No 2 (1982), 318-331. | MR 650227
- ,[17] 13, 14, Gakkotosho, Tokyo (2000). | MR 1793016
(Ed.), Free Boundary Problems: Theory and Applications, I,II, Gakuto International Series: Mathematical Sciences and Applications, Vol.[18] Exact solutions in nonlinear diffusion, J. Engrg. Math., 8 (1974), 219-227. | MR 378593 | Zbl 0279.76043
- ,[19] Memoire sur la solidification par refroidissementd’un globe liquide, Annales Chimie Physique, 47 (1831), 250-256.
- ,[20]
, Heat transfer with freezing and thawing, Elsevier, Amsterdam (1991)[21] Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math., 40,No 2 (1981), 191-207. | MR 610415 | Zbl 0468.35051
- - - - ,[22] Explicit solutions to the two-phase Stefan problemfor Storm-type materials, J. Phys. A: Math. Gen., 33 (2000), 395-404. | MR 1747160 | Zbl 0986.35138
- ,[23] Explicit solutions to the one-phase Stefan problemwith temperature-dependent thermal conductivity and a convective term, Int. J.Engng. Sci., 41 (2003), 1685-1698. | MR 1985327 | Zbl 1211.35285
- ,[24] General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, 13 (1960), 1-12. | MR 118858 | Zbl 0135.31802
,[25] The method of the «carry over» of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33, No 1 (1990), 175-181
- ,[26] Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen., 18 (1985), 105-109. | MR 783186
,[27] On a class of moving boundary problems in non-linear heat condition: Application of a Bäcklund transformation, Int. J. Non-Linear Mech., 21 (1986), 249-256. | MR 893762 | Zbl 0615.35044
,[28] On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 122-129. | MR 928584 | Zbl 0661.35087
- ,[29] Exact solution fornonlinear nonhysteretic redistribution in vertical soli of finite depth, Water Resources Research, 27 (1991), 1529-1536.
- - - ,[30] An inequality for the coefficient of the free boundary of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39(1981), 491-497. | MR 644103
,[31] A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A #2 (2000) (with 5869 titles on the subject, 300 pages). See www.austral.edu.ar/MAT-SerieA/2(2000)/ | MR 1802028
,[32] A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction, Int. J. Heat Mass Transfer, 37, No 14 (1994), 2113-2121. | Zbl 0926.76119
- ,