We give, here, a geometric treatment of intersection homology theory.
In questa nota viene fornita una trattazione geometrica della teoria dell'omologia di intersezione.
@article{BUMI_2006_8_9B_1_69_0, author = {S. Dragotti and G. Magro and L. Parlato}, title = {Transverse Homology Groups}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {69-77}, zbl = {1150.55001}, mrnumber = {2204901}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_69_0} }
Dragotti, S.; Magro, G.; Parlato, L. Transverse Homology Groups. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 69-77. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_69_0/
[1] | MR 413113
- - , A geometric approach inhomology theory, Cambridge University Press - London - New York, 1976.[2] Intersection homology theory, Topology, 19 (1979), 135-162. | MR 572580 | Zbl 0448.55004
- ,[3] | MR 1402473
, Algebraic topology, Van Nostrand, London, 1970.[4] Stratified general position, Algebraic and Geometric Topology, 142-146, Springer Lecture Notes in Mathematics, n. 664, Springer-Verlag, New York(1978). | MR 518413
,[5] 69, Springer-Verlag, Berlin and New York, 1972. | Zbl 0254.57010
- , Introduction to PL topology, Ergeb. Mat. Band.,[6] | MR 210112
, Algebraic Topology, McGraw-Hill, New York, 1966.