We give, here, a geometric treatment of intersection homology theory.
In questa nota viene fornita una trattazione geometrica della teoria dell'omologia di intersezione.
@article{BUMI_2006_8_9B_1_69_0,
author = {S. Dragotti and G. Magro and L. Parlato},
title = {Transverse Homology Groups},
journal = {Bollettino dell'Unione Matematica Italiana},
volume = {9-A},
year = {2006},
pages = {69-77},
zbl = {1150.55001},
mrnumber = {2204901},
language = {en},
url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_69_0}
}
Dragotti, S.; Magro, G.; Parlato, L. Transverse Homology Groups. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 69-77. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_69_0/
[1] - - , A geometric approach inhomology theory, Cambridge University Press - London - New York, 1976. | MR 413113
[2] - , Intersection homology theory, Topology, 19 (1979), 135-162. | MR 572580 | Zbl 0448.55004
[3] , Algebraic topology, Van Nostrand, London, 1970. | MR 1402473
[4] , Stratified general position, Algebraic and Geometric Topology, 142-146, Springer Lecture Notes in Mathematics, n. 664, Springer-Verlag, New York(1978). | MR 518413
[5] - , Introduction to PL topology, Ergeb. Mat. Band., 69, Springer-Verlag, Berlin and New York, 1972. | Zbl 0254.57010
[6] , Algebraic Topology, McGraw-Hill, New York, 1966. | MR 210112