We obtain coniugacy classes (with respect to a action) in the space of Hodge cycles in the middle cohomology of an Abelian variety of quaternionic type. The existence of such a class simplifies the study of the Hodge conjecture.
In questo articolo viene analizzato lo spazio delle classi di Hodge contenute nella coomologia intermedia di una varietà Abeliana di tipo quaternionico. Vengono costruite -rappresentazioni che semplificano lo studio della congettura di Hodge in quanto l'agebricità di una classe implica quella di tutte le altre contenute nelle medesima rappresentazione.
@article{BUMI_2006_8_9B_1_247_0, author = {Giuseppe Lombardo}, title = {Hodge Classes and Abelian Varieties of Quaternionic Type}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {247-256}, zbl = {1150.14001}, mrnumber = {2204910}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_247_0} }
Lombardo, Giuseppe. Hodge Classes and Abelian Varieties of Quaternionic Type. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 247-256. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_247_0/
[Ab1] Abelian varieities and the general Hodge conjecture, Compositio Math., 109, no. 3 (1997), 341-355. | Zbl 0891.14003
,[F-H] 129, Springer-Verlag, New York, (1991). | Zbl 0744.22001
- , Representation Theory, A first course, Graduate Texts in Mathematics,[H] Some modular varieties related to , in: Abelian varieties (Egloffstein, 1993), de Gruyter, Berlin, (1995), 105-129.
,[L] Abelian varieties of Weil type and Kuga-Satake varieties, Tohoku Math. J, 53 (2001), 453-466. | Zbl 1081.14504
,[vG] Kuga-Satake varieties and the Hodge conjecture, in: The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht (2000), 51-82.
,[vG-V] Quaternionic Prym and Hodge classes, Topology, 42 (2003), 35-53. | Zbl 1074.14008
- ,