We prove the well-posedness of the Cauchy Problem for first order weakly hyperbolic systems in the multi-anisotropic Gevrey classes, that generalize the standard Gevrey spaces. The result is obtained under the following hypotheses: the principal part is weakly hyperbolic with constant coefficients, the lower order terms satisfy some Levi-type conditions; and lastly the coefficients of the lower order terms belong to a suitable anisotropic Gevrey class. In the proof it is used the quasi-symmetrization of Sylvster-type systems, adapted to the case of the multi-anisotropic Gevrey classes and taking into account the lower order terms.
Si dimostra la buona positura del problema di Cauchy per sistemi debolmente iperbolici nell'ambito delle classi Gevrey multi-anisotrope, generalizzanti le classi Gevrey standard. Il risultato è ottenuto sotto le seguenti ipotesi: la parte principale ha e coefficienti costanti; i termini di ordine inferiore soddisfano delle condizioni di tipo Levi; infine i coefficienti dei termini di ordine inferiore appartengono a un'opportuna classe Gevrey anisotropa. Nella dimostrazione viene utilizzata la tecnica della quasi-simmetrizzazione di sistemi di tipo Sylvester, adattata alle classi Gevrey multi-anisotrope e tenendo conto dei termini di ordine inferiore.
@article{BUMI_2006_8_9B_1_21_0, author = {Daniela Calvo}, title = {Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {21-50}, zbl = {1178.35236}, mrnumber = {2204898}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_21_0} }
Calvo, Daniela. Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 21-50. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_21_0/
[1] | MR 1435282 | Zbl 0878.35001
- - , Global hypoellipticity and spectral theory,Akademie Verlag, Berlin, 1996.[2] The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moscow Math. Soc., 41 (1980), 87-103. | MR 611140
,[3] Generalized Gevrey classes and multi-quasi-hyperbolic operators, Rend. Sem. Mat. Univ. Pol. Torino, 6, N. 2 (2002), 73-100. | MR 1980363 | Zbl 1177.35050
,[4] Cauchy problem in generalized Gevrey classes, Evolution Equations, Propagation Phenomena - Global Existence - Influence of Non-Linearities, Eds. , , , Warszawa2003, Banach Center Publications, Vol. 60, 269-278. | MR 1993054 | Zbl 1024.35063
,[5] Cauchy problem in inhomogeneous Gevrey classes, Progress in Analysis, Proceeding of the 3rd International ISAAC Congress, Vol. II, Eds. , , , World Scientific (Singapore, 2003), 1015-1033. | MR 2032781 | Zbl 1060.35077
,[6] 24, Pitagora 1983, Bologna.
, Alcuni problemi per equazioni differenziali lineari con coefficienti costanti, Quad. Un. Mat. It.,[7] An example of weakly hyperbolic Cauchy problem not well-posed in C I , Acta Math., 148 (1982), 243-253. | MR 666112 | Zbl 0517.35053
- ,[8] Un Teorema di rappresentazione per certe classi generalizzate di Gevrey, Boll. Un. Mat. It. Serie VI, Vol. 4-C, N.1 (1985), 245-257. | MR 805217
,[9] Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. It., 1-B (1998), 165-185. | MR 1618976
- ,[10] Multi-quasielliptic polynomials, Ann. Sc. Norm. Sup. Pisa, Cl. di Sc., 21 (1967), 239-260. | MR 221090
,[11] Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semilinear equations, Comm. Appl. Anal., 3, N. 4 (1999), 563-574. | MR 1706710 | Zbl 0933.35204
,[12] Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2002), 62-79. | MR 1905664 | Zbl 1027.35170
,[13] The method of Newton's polyhedron in the theory of partial differential equations, Mathematics and its applications, Soviet Series, 86 (1992). | MR 1256484 | Zbl 0779.35001
- ,[14] On Gevrey type solutions of hypoelliptic equations, Journal of Contemporary Math. Anal. (Armenian Akad. of Sciences), 31, N. 2 (1996), 33-47. | MR 1683925
- ,[15] Gevrey class solutions of hypoellipticequations, IZV. Nat. Acad. Nauk Arm., Math., 33, N. 1 (1998), 35-47. | MR 1714534
- ,[16] | MR 705278
, The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin, 1983-1985.[17] Sharp quasi-symmetrizer for hyperbolic Sylvester matrices, Communication in the «Workshop on Hyperbolic PDE», Venezia 11-12 April 2002, to appear.
,[18] On the symmetrization of the principal symbol of hyperbolic equations, Comm. Partial Differential Equations, 14 (1989), 1617-1634. | MR 1039912
,[19] Local solution of the Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460. | MR 725589
,[20] Generalized hyperbolicity, Ark. Mat., 7 (1967), 11-32. | MR 221062
,[21] Équations hyperboliques non-strictes: contre-exemples, du type De Giorgi, aux théorèmes d'existence et d'unicité, Math. Ann., 162 (1966), pp. 228-236. | MR 217418 | Zbl 0135.15001
,[22] Équations et systemes non-lineaires, hyperboliques non-stricts, Math. Ann., 70 (1967), 167-205. | MR 208136 | Zbl 0146.33701
- ,[23] Inhomogeneous Gevrey classes and related pseudodifferential operators, Anal. Funz. Appl. Boll. Un. Mat. It., 3-C, N. 1 (1984), 233-323. | MR 749292 | Zbl 0557.35131
- ,[24] | MR 599580 | Zbl 0263.35001
, The theory of partial differential equations, Universiy Press, Cambridge, 1973.[25] | MR 1249275 | Zbl 0869.35005
, Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Singapore, 1993.[26] Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Differential Equations, 17 (1975), 119-153. | MR 355359 | Zbl 0287.35065
,[27] Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Suppl. Boll. Un. Mat. It., 1 (1980), 177-195. | MR 629415
,[28] Iterati di operatori e regolarita Gevrey microlocale anisotropa, Rend. Sem. Mat. Univ. Padova, 67 (1982), 85-104. | MR 682703
,