Given the Cauchy Problem Nishitani [N], by making use of a change of basis by a constant matrix, transformed the real, analytic, hyperbolic matrix into the complex matrix and showed that the given Cauchy Problem is well posed in in a neighborhood ofzero if and only if (see also [MS]) the following condition is satisfied, where In this short note, we give a very simple condition, which is equivalent to that of Nishitani (and then a necessary and sufficient for the Well-Posedness), but where only the elements of appear and not their derivatives.
Dato il Problema di Cauchy Nishitani [N], dopo aver effettuato, mediante una matrice di cambiamento di base costante, la trasformazione della matrice reale, analitica e iperbolica, nella matrice complessa ha dimostrato che il Problema di Cauchy considerato è ben posto in in un intorno di zero se e solo se vale la condizione dove In questo breve lavoro invece diamo una semplicissima condizione equivalente a quella di Nishitani (e quindi necessaria e sufficiente per la buona positura), in cui compaiono solamente gli elementi di e non le loro derivate.
@article{BUMI_2006_8_9B_1_215_0, author = {Lorenzo Mencherini}, title = { A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {215-220}, zbl = {1150.35065}, mrnumber = {2204908}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_215_0} }
Mencherini, Lorenzo. A simple necessary and sufficient condition for well-posedness of $2 \times 2$ differential systems with time-dependent coefficients. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 215-220. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_215_0/
[MS] Well Posedness of 2x2 Systems with -Coefficients, in «Hyperbolic Problems and Related Topics, Cortona 2002», and Ed.s, International Press, Somerville, USA, 235-242. | MR 2056853
- ,[N] Hyperbolicity of two by two systems with two independent variables, Comm. Part. Diff. Equat.23 (1998), 1061-1110. | MR 1632796 | Zbl 0913.35079
,