We consider a Hamiltonian system in a neighbourhood of an elliptic equilibrium which is a minimum for the Hamiltonian. With appropriate non-resonance conditions we prove that in the neighbourhood of the equilibrium there exist low dimensional manifolds that are exponentially stable in Nekhoroshev’s sense. This generalizes the theorem of Lyapounov on the existence of periodic orbits. The result may be meaningful for, e.g., the dynamics of non-linear chains of the Fermi-Pasta-Ulam (FPU) type.
Si considera un sistema Hamiltoniano nell’intorno di un punto di equilibrio che sia punto di minimo per l'Hamiltoniana. Si dimostra, sotto condizioni opportune di non-risonanza, che nell’intorno del punto di equilibrio esistono varietà di dimensione bassa che presentano caratteristiche di stabilità esponenziale nel senso di Nekhoroshev. Il risultato costituisce una generalizzazione del teorema di Lyapounov sull’esistenza di orbite periodiche. Questo può essere interessante, ad esempio, per la comprensione della dinamica di catene non-lineari del tipo di Fermi, Pasta e Ulam (FPU).
@article{BUMI_2006_8_9B_1_1_0, author = {Antonio Giorgilli and Daniele Muraro}, title = {Exponentially stable manifolds in the neighbourhood of elliptic equilibria}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {1-20}, zbl = {1178.70084}, mrnumber = {2204898}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_1_0} }
Giorgilli, Antonio; Muraro, Daniele. Exponentially stable manifolds in the neighbourhood of elliptic equilibria. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 1-20. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_1_0/
[1] Localization of energy in FPU chains, DCDS-B, to appear. | MR 2112707 | Zbl 1136.37353
- - ,[2] Anharmonic chain with Lennard-Jones interaction, Phys. Rew. A, 2 (1970), 2013-2019.
- - - ,[3] New phenomenon in the stochastic transition of coupled oscillators, Phys. Rev. A, 17 (1978), 786.
- - - - ,[4] The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems, Phys. Rev. E, 55 (1997), 6566-6574. | MR 1453804
- - ,[5] On the solutions of Hamiltonian systems in the neighbourhood of asingular point, Proc. London Math. Soc., Ser. 2, 27 (1926), 151-170. | MR 1575385
,[6] Stochasticity of the simplest dynamical model with divided phase space, Dokl. Akad. Nauk. SSSR, 166 (1966), 57; Sov. Phys. Dokl., 11 (1966), 30.
- ,[7] Finite time to equipartition in the thermodynamic limit, Phys. Rev. E, 60 (1999), 3781-3786.
- - ,[8] Studies of nonlinear problems, Los Alamos document LA-1940 (1955). | Zbl 0353.70028
- - ,[9] On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Physica D, 59 (1992), 334-348. | MR 1192748 | Zbl 0775.70023
- - - ,[10] Unstable equilibria of Hamiltonian systems, Disc. and Cont. Dynamical Systems, Vol. 7, N. 4 (2001), 855-871. | MR 1849665 | Zbl 1016.37031
,[11] Equipartition thresholds in chains of anharmonic oscillators, J. Stat. Phys., 76 (1994), 627-643.
- - ,[12] Relaxation to different stationary states in the Fermi-Pasta-Ulam model, Phys. Rev. A, 28 (1983), 3544-3552.
- - - - ,[13] Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model, Phys. Rev. A, 31 (1985), 1039-1045.
- - - - ,[14] On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11 (1958), 257-271. | MR 96021 | Zbl 0082.08003
,[15] Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics, Phys. Rev. A, 41 (1990), 768-783. | MR 1036970
- ,