A linear magnetic Bénard problem with tensorial electrical conductivity
Georgescu, A. ; Palese, L. ; Redaelli, A.
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 197-214 / Harvested from Biblioteca Digitale Italiana di Matematica

For normal mode perturbations, in the hypothesis that the principle of exchange of stabilities holds, the eigenvalue problem defining the neutral curves of the linear stability for a magnetic electroanisotropic Benard problem is solved by Budiansky-DiPrima method. The unknown functions are taken as Fourier series on some total sets of separable Hilbert spaces and the expansion functions satisfied only part of the boundary conditions of the problem. This introduces some constraints to be satisfied by the Fourier coefficients. In order to keep the number of these constraintsas low as possible we are lead to use total sets for the even velocity and temperature fields different from the case when velocity and temperature are odd.The splitting ofthe unknown functions into even and odd parts leads to two problems of the sameorder as the given one each of which containing even as well as odd order parts of these functions. The secular equations involve series which are truncated to one and two terms, the last situation corresponding to best results. A closed form of the neutral curve is obtained. The presence of the Hall currents is proved to be destabilizing.

Si studia, nell'ipotesi che sussista il principio di scambio delle stabilità, il problema agli autovalori che governa la stabilità lineare della quiete per un problema di Benard elettroanisotropo, in presenza di correnti di Hall e di ion-slip. Si risolvono due problemi agli autovalori dello stesso ordine derivanti dall'aver scomposto le perturbazioni nelle loro parti pari e dispari, espresse come somme di serie di Fourier di opportuni insiemi totali in spazi di Hilbert separabili. Si determinano le curve neutrali applicando il metodo di Budiansky-DiPrima Si prova l'effetto instabilizzante delle correnti elettroanisotrope.

Publié le : 2006-02-01
@article{BUMI_2006_8_9B_1_197_0,
     author = {A. Georgescu and L. Palese and A. Redaelli},
     title = {A linear magnetic B\'enard problem with tensorial electrical conductivity},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {197-214},
     zbl = {1150.76034},
     mrnumber = {2204907},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_197_0}
}
Georgescu, A.; Palese, L.; Redaelli, A. A linear magnetic Bénard problem with tensorial electrical conductivity. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 197-214. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_197_0/

[1] Abani, Kamla - Srivastava, K.M., Rayleigh-Taylor instability of a viscous plasma inthe Presence of Hall current, Il Nuovo Cimento, 26, 2 (1975), 419-432.

[2] Chandrasekhar, S., Hydrodynamic and hydromagnetic stability, Clarendon, Oxford, 1968. | MR 128226

[3] Di Prima, R. C., Some variational principles for problems in hydrodynamic and hydromagnetic stability, Quart. Appl. Math., 18, 4 (1961), 375-385. | MR 116767

[4] Ebel, D. - Shen, M.C., On the linear stability of a toroidal plasma with resistivity, viscosity and Hall current, J. Math.Anal. Appl., 125 (1987), 81-103. | MR 891351 | Zbl 0649.76023

[5] Ebel, D. - Shen, M. M., Linearization principle for a toroidal Hall current plasma with viscosity and resistivity, Annali Mat. Pura Appl., 150 (1988), 39-65. | MR 946029 | Zbl 0666.76153

[6] Georgescu, A., Hydrodynamic stability theory, Kluwer, Dordrecht, 1985. | MR 850008 | Zbl 0608.76035

[7] Georgescu, A., Variational formulation of some nonselfadjoint problems occurring in Benard instability theory, I, Series in Mathematics35/1977INCREST, Bucharest.

[8] Georgescu, A. - Palese, L. - Pasca, D. - Buican, M., Critical hydromagnetic stability of a thermodiffusive state, Rev. Roumaine Math. Pures et Appl., 38, 10 (1993), 831840. | MR 1264602

[9] Georgescu, A. - Palese, L., Neutral stability hypersurfaces for an anisotropic M.H.D. thermodiffusive mixture. III. Detection of false secular manifolds among the bifurcation characteristic manifolds, Rev. Roumaine Math. Pures et Appl., 41, 12 (1996), 35-49. | MR 1404641 | Zbl 0857.76032

[10] Gradshteyn, J. S. - Ryzhik, I. M., Table of integrals, series, and products, Academic, New York, 1980. | MR 669666 | Zbl 0521.33001

[11] Joseph, D. D., Stability of fluid motions, vols. I, II, Springer, Berlin, 1976. | MR 627612

[12] Maiellaro, M. - Palese, L., Sui moti M.H.D. stazionari di una miscela binaria in uno strato obliquo poroso in presenza di effetto Hall e sulla loro stabilita, Rend. Accad. Sc. Mat. Fis., Napoli, IV, XLVI (1979), 471-481. | Zbl 0441.76041

[13] Maiellaro, M. - Palese, L., Electrical anisotropic effects on thermal instability. Int. J. Engng. Sc., 22, 4 (1984), 411-418. | Zbl 0534.76045

[14] Maiellaro, M. - Palese, L. - Labianca, A., Instabilizing-stabilizing effects of M.H.D. anisotropic currents, Int. J. Engng. Sc., 27, 11 (1989), 1353-1359. | MR 998286 | Zbl 0693.76059

[15] Maiellaro, M. - Labianca, A., On the non linear stability in anisotropic MHD with applications to Couette Poiseuille flows. Int. J. Engng. Sc., 40, (2002), 1053-1068. | Zbl 1211.76153

[16] Mikhlin, S. G., Mathematical physics, an advanced course, North Holland, Amsterdam, 1970. | MR 286325 | Zbl 0202.36901

[17] Mulone, G. - Rionero, S., On the non linear stability of the rotating Benard problemvia the Lyapunov direct method, J. Math.Anal. Appl., 144 (1989), 109-127. | MR 1022564 | Zbl 0682.76037

[18] Mulone, G. - Rionero, S., On the stability of the rotating Benard problem, Bull. Tech.Univ. Istanbul, 47 (1994), 181-202. | MR 1321950 | Zbl 0864.76030

[19] Mulone, G. - Salemi, F., Some continuous dependence theorems in M.H.D. with Hall and ion-slip currents in unbounded domains, Rend. Accad. Sci. Fis. Mat. Napoli, IV, 55 (1988), 139-152. | MR 1136744 | Zbl 1145.76473

[20] SPai, H. I., Magnetohydrodynamics and plasma dynamics, Springer, Berlin, 1962.

[21] Palese, L., Sull'instabilita gravitazionale e sulla propagazione ondosa per un fluido elettroconduttore anisotropo inquinato, Atti Sem. Mat. Fis. Univ. Modena,XLII (1994), 1-17.

[22] Palese, L., Electroanisotropic effects on the thermal instability of an anisotropic binary fluid mixture, J. of Magnetohydrodynamics and Plasma Research, 7, 2/3 (1997), 101-120.

[23] Palese, L. - Georgescu, A. - Pasca, D., Stability of a binary mixture in a porous medium with Hall ion-slip effect and Soret Dufour currents, Analele Univ. Oradea, 3 (1993), 92-96.

[24] Palese, L. - Georgescu, A., A linear magnetic Benard problem with Hall effect. Application of Budiansky-DiPrima method, Rapporti Int. Dip. Mat. Bari, 15 (2003).

[25] Palese, L. - Georgescu, A. - Pasca, D. - Bonea, D., Thermosolutal instability of a compressible Soret-Dufour mixture with Hall and ion-slip currents through a porous medium, Rev. Roumaine Mec. Appl., 42, 3-4, (1997) 279 -296. | MR 2165211

[26] Rionero, S. - Mulone, G., A non linear stability analysis of the magnetic Benard problem through the Lyapunov direct method, Arch. Rational Mech. Anal., 103 (1988), 347-368. | MR 955532 | Zbl 0666.76068

[27] Sharma, R. C. - Sharma, K. C., Thermal instability of compressible fluids with Hallcurrents through porous medium, Instanbul Univ. Fen. Fak. Mec. A, 43 (1978), 89-98. | MR 948330

[28] Sharma, R. C. - Rani, Neela, Hall effects on thermosolutal instability of a plasma, Indian J. of Pure Appl. Mat., 19, 2 (1988), 202-207. | Zbl 0637.76045

[29] Sharma, R. C. - Chand, Trilok, Thermosolutal instability of compressible Hall plasma in porous medium, Astrophysics and Space Science, 155 (1989), 301-310. | Zbl 0671.76072

[30] Solonnikov, V. A. - Mulone, G., On the solvability of some initial boundary value problems in magnetofluidmechanics with Hall and ion-slip effects, Rend. Mat. Acc. Lincei, 9, 6 (1995), 117-132. | MR 1354225 | Zbl 0834.76094

[31] Sutton, G. W. - Sherman, A., Engineering magnetohydrodynamics, Mc Graw Hill, New York, 1965.