Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces
Grzegorz, Nowak
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 183-195 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider the Kantorovich and the Durrmeyer type modifications of the generalized Favard operators and we prove inverse approximation theorems for functions f such that w2mfLp(R), where 1p and w2m(x)=(1+x2m)-1, mN0.

Consideriamo le modificazioni di tipo Kantorovich e Durrmeyer degli operatori generalizzati di Favard e proviamo i teoremi inversi di approssimazione per funzioni f tali che w2mfLp(R), dove 1p e w2m(x)=(1+x2m)-1, mN0.

Publié le : 2006-02-01
@article{BUMI_2006_8_9B_1_183_0,
     author = {Nowak Grzegorz},
     title = {Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {183-195},
     zbl = {1150.41016},
     mrnumber = {2204906},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_183_0}
}
Grzegorz, Nowak. Inverse results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 183-195. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_183_0/

[1] Becker, M. - Butzer, P.L. - Nessel, R.J., Saturation for Favard operators in weighted function spaces, Studia Math., 59 (1976), 139-153. | MR 438006 | Zbl 0352.41023

[2] Becker, M., Inverse theorems for Favard operators in polynomial weight spaces,Ann. Soc. Math. Pol., Ser. I: Comment Math., 22 (1981), 165-173. | MR 641432 | Zbl 0508.41017

[3] Berens, H. - Lorentz, G.G., Inverse theorems for Bernstein polynomials, Indiana University Mathematics Journal, Vol. 21, No 8 (1972). | MR 296579 | Zbl 0262.41006

[4] Butzer, P.L. - Nessel, R.J., Fourier Analysis and Approximation, Vol. I, Academic Press, New York and London, 1971. | MR 510857 | Zbl 0217.42603

[5] Ditzian, Z. - Totik, V., Moduli of Smoothness, Springer Series in Computational Mathematics, Vol. 9, Springer-Verlag, New York Inc., 1987. | MR 914149

[6] Favard, J., Sur les multiplicateurs d'interpolation, J. Math. Pures Appl., 23 (1944),219-247. | MR 15547 | Zbl 0063.01317

[7] Gawronski, W. - Stadtmuller, U., Approximation of continuous functions by generalized Favard operators, J. Approx. Theory, 34 (1982), 384-396. | MR 656639 | Zbl 0484.41019

[8] Nowak, G., Direct results for generalized Favard-Kantorovich and Favard-Durrmeyer operators in weighted function spaces. Demonstratio Math., 36 (2003), 879-891. | MR 2018708 | Zbl 1044.41011

[9] Nowak, G. - Pych-Taberska, P., Approximation properties of the generalized Favard-Kantorovich operators, Ann. Soc. Math. Pol., Ser. I: Comment. Math., 39 (1999), 139-152. | MR 1739024 | Zbl 0970.41014

[10] Nowak, G. - Pych-Taberska, P., Some properties of the generalized Favard Durrmeyer operators, Funct. et Approximatio, Comment. Math., 29 (2001), 103-112. | MR 2135601

[11] Pych-Taberska, P., On the generalized Favard operators, Funct. Approximatio, Comment. Math., 26 (1998), 256-273. | MR 1666626 | Zbl 0920.41009