Boundary value problems on manifolds with conical singularities or edges contain potential operators as well as trace and Green operators which play a similar role as the corresponding operators in (pseudo-differential) boundary value problems on a smooth manifold. There is then a specific asymptotic behaviour of these operators close to the singularities. We characterise potential operators in terms of actions of cone or edge pseudo-differential operators (in the neighbouring space) on densities supported by submanifolds which also have conical or edge singularities. As a byproduct we show the continuity of such potentials as continuous operators between cone or edge Sobolev spaces and subspaces with asymptotics.
I problemi al contorno su varieta con singolarità coniche o di tipo edges (spigoli) contengono operatori potenziali come operatori di traccia e operatori di Green, i quali svolgono lo stesso ruolo dei corrispondenti operatori nel calcolo pseudo-differenziale per problemi al contorno su varietà lisce. Esiste allora uno specifico sviluppo asintotico di questi operatori nell'intorno delle singolarita. In questo lavoro caratteriziamo gli operatori potenziali in termini di azioni di operatori pseudodifferenziali di tipo conico o di tipo edge, su densità che sono supportate da sottovarietà che hanno anch'esse singolarità coniche e di tipo edge. Attravevso un biprodotto mostriamo che tali potenziali sono operatori continui tra spazi di Sobolev di tipo conico o di tipo edge e sottospazi con asintotiche.
@article{BUMI_2006_8_9B_1_145_0, author = {D. Kapanadze and B.-W Schulze}, title = {Asymptotics of potentials in the edge calculus}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {9-A}, year = {2006}, pages = {145-182}, zbl = {1118.58014}, mrnumber = {2204905}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_145_0} }
Kapanadze, D.; Schulze, B.-W. Asymptotics of potentials in the edge calculus. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 145-182. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_145_0/
[1] Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, II, Comm. Pure Appl. Math., 12 (1959), 623-727, 17 (1964), 35-92. | MR 162050 | Zbl 0093.10401
- - ,[2] Boundary problems for pseudo-differential operators, Acta Math., 126 (1971), 11-51. | MR 407904 | Zbl 0206.39401
,[3] Asymptotics of functions represented by potentials, Russian Journal of Mathem. Physics, 7 (2000), 15-47. | MR 1832772 | Zbl 1065.35508
- ,[4] Cone pseudodifferential operators in the edge symbolic calculus, Osaka J. Math., 37 (2000), 219-258. | MR 1750278
- - ,[5] 1341, Springer-Verlag, 1988. | MR 961439 | Zbl 0668.35001
, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol.[6] | MR 2023308 | Zbl 1053.58010
- , Crack theory and edge singularities, Kluwer Academic Publ., Dordrecht, 2003.[7] Mellin-edge-representation of elliptic operators, Math. Meth. in the Applied Sci. (to appear). | MR 2182481 | Zbl 1190.58021
- ,[8] Boundary value problems for elliptic equations in domains with conical points, Trudy Mosk. Mat. Obshch., 16 (1967), 209-292. | MR 226187
,[9] A symbol algebra for pseudodifferential boundary value problems on manifolds with edges, Differential Equations, Asymptotic Analysis, and Mathematical Physics, Math. Research, vol. 100 (Akademie Verlag, Berlin, 1997), 292-324. | MR 1456200 | Zbl 0882.35144
- ,[10] Boundary value problems in Boutet de Monvel's calculus for manifolds with conical singularities I, Advances in Partial Differential Equations (Pseudo-differential calculus and Mathematical Physics) (Akademie Verlag, Berlin, 1994), 97-209. | MR 1287666
- ,[11] Boundary value problems in Boutet de Monvel's calculus for manifolds with conical singularities II, Advances in Partial Differential Equations (Boundary Value Problems, Schrodinger Operators, Deformation Quantization) (Akademie Verlag, Berlin, 1995), 70-205. | MR 1389012 | Zbl 0847.35156
- ,[12] | MR 1142574
, Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam, 1991.[13] | MR 1631763
, Boundary value problems and singular pseudo-differential operators, J. Wiley, Chichester, 1998.[14] Crack theory with singularities at the boundary, Pliska Stud. Math. Bulgar., 15 (2003), 21-66. | MR 2071683
,[15] The edge algebra structure of boundary value problems, Annals of Global Analysis and Geometry, 22 (2002), 197-265. | MR 1925589 | Zbl 1024.58011
- ,[16] Green pseudodifferential operators on a manifold with edges, Comm. Partial Differential Equations, 23, 1-2 (1998), 171-200. | MR 1608512
- ,[17] The cone algebra and kernel characterization of Green operators, Advances in Partial Differential Equations (Approaches to Singular Analysis) ( , , and , eds.), Oper. Theory Adv. Appl. (Birkhäuser, Basel, 2001), 1-29. | MR 1827169 | Zbl 0994.35128
,