Commutative cancellative semigroups and rational vector spaces
Cegarra, Antonio M. ; Petrich, Mario
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 133-144 / Harvested from Biblioteca Digitale Italiana di Matematica

Representing a commutative cancellative subarchimedean semigroup S as i(G,I), we consider Hom(S,) and Hom (G,), where Q is the additive group of rational numbers. These sets can be given the structure of rational vector spaces. Suitable isomorphic copies of these vector spaces are found by means of certain functions related to some mappings introduced by T. Tamura.

Rappresentando un semigruppo commutativo cancellativo subarchimedeo S e come i(G,I), consideriamo Hom(S,) e Hom (G,), dove è il gruppo additivo dei numeri razionali. Questi insiemi possono essere muniti di una struttura di spazio vettoriale razionale. Si trovano convenienti copie isomorfe di questi spazi vettoriali con uso di funzioni in relazione a certe applicazioni introdotte da T. Tamura.

Publié le : 2006-02-01
@article{BUMI_2006_8_9B_1_133_0,
     author = {Antonio M. Cegarra and Mario Petrich},
     title = {Commutative cancellative semigroups and rational vector spaces},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {133-144},
     zbl = {1147.20317},
     mrnumber = {2204904},
     language = {en},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9B_1_133_0}
}
Cegarra, Antonio M.; Petrich, Mario. Commutative cancellative semigroups and rational vector spaces. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 133-144. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9B_1_133_0/

[1] Cegarra, A. M. - Petrich, M., Categories of representations of a class of commutative cancellative semigroups, Algebra Colloq., 8 (2001), 361-380. | MR 1865117 | Zbl 1001.20052

[2] Cegarra, A. M. - Petrich, M., The rank of a commutative cancellative semigroup, Acta Math. Hung., 107 (1-2) (2005), 71-75. | MR 2148936 | Zbl 1076.20049

[3] Fuchs, L., Infinite abelian groups I, Academic Press, New York, San Francisco, London, 1974. | MR 348006 | Zbl 0338.20063

[4] Grillet, P. A., Semigroups, An introduction to structure theory, Dekker, New York, 1995. | MR 1350793

[5] Hamilton, H. B. - Nordahl, T. E. - Tamura, T., Commutative cancellative semigroups without idempotents, Pacific J. Math., 61 (1975), 441-456. | MR 401954 | Zbl 0358.20073

[6] Tamura, T., Basic study of 𝔑-semigroups and their homomorphisms, Semigroup Forum, 8 (1974), 21-50. | MR 374307 | Zbl 0275.20110

[7] Tamura, T., Commutative cancellative semigroups with nontrivial homomorphisms into nonnegative real numbers, J. Algebra, 76 (1982), 25-41. | MR 659208 | Zbl 0486.20039