Geometria delle superfici in certi spazi omogenei tridimensionali
Onnis, Irene Iganzia
Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006), p. 267-270 / Harvested from Biblioteca Digitale Italiana di Matematica
Publié le : 2006-08-01
@article{BUMI_2006_8_9A_2_267_0,
     author = {Irene Iganzia Onnis},
     title = {Geometria delle superfici in certi spazi omogenei tridimensionali},
     journal = {Bollettino dell'Unione Matematica Italiana},
     volume = {9-A},
     year = {2006},
     pages = {267-270},
     language = {it},
     url = {http://dml.mathdoc.fr/item/BUMI_2006_8_9A_2_267_0}
}
Onnis, Irene Iganzia. Geometria delle superfici in certi spazi omogenei tridimensionali. Bollettino dell'Unione Matematica Italiana, Tome 9-A (2006) pp. 267-270. http://gdmltest.u-ga.fr/item/BUMI_2006_8_9A_2_267_0/

[1] Back, A., Do Carmo, M.P. e Hsiang, W.Y., On the fundamental equations of equivariant geometry, (unpublished manuscript). | Zbl 1205.53033

[2] Caddeo, R., Piu, P. e Ratto, A., Rotational surfaces in H3 with constant Gauss curvature, Boll. Un. Mat. Ital., B (7) (1996), 341-357. | Zbl 0849.53004

[3] MERCURI F, Montaldo, S. e Piu, P., Weierstrass representation formulae of minimal surfaces in H3 and H2×R, Acta Math. Sinica, to appear. | Zbl 1119.53041

[4] Montaldo, S. e Onnis, I.I., Invariant CMC surfaces in H2×R, Glasg. Math. J., 46 (2004), 311-321. | Zbl 1055.53045

[5] Montaldo, S. e Onnis, I.I., Invariant surfaces in a three-manifold with constant Gaussian curvature, J. Geom. Phys., 55 (4) (2005), 440-449. | Zbl 1084.53055

[6] Montaldo, S. e Onnis, I.I., Invariant surfaces in H2×R with constant (Gauss or mean) curvature, Publ. de la RSME, 9 (2005), 91-103.