We provide a sensitivity result for the solutions to the following finite-dimensional quasi-variational inequality when both the operator and the convex are perturbed. In particular, we prove the Hölder continuity of the solution sets of the problems perturbed around the original problem. All the results may be extended to infinite-dimensional (QVI).
Si propone un risultato di sensitività delle soluzioni di disequazioni quasi- variazionali finito-dimensionali del tipo: in presenza di perturbazioni dell'operatore e dell'insieme convesso . In particolare, si prova la continuità Hölderiana degli insiemi delle soluzioni dei problemi perturbati intorno al problema iniziale. I risultati illustrati possono essere estesi anche al caso infinito-dimensionale.
@article{BUMI_2005_8_8B_3_767_0, author = {Samir Adly and Mohamed Ait Mansour and Laura Scrimali}, title = {Sensitivity analysis of solutions to a class of quasi-variational inequalities}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {767-771}, zbl = {1150.49010}, mrnumber = {2182428}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_767_0} }
Adly, Samir; Ait Mansour, Mohamed; Scrimali, Laura. Sensitivity analysis of solutions to a class of quasi-variational inequalities. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 767-771. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_767_0/
[1] Sensitivity analysis for abstract equilibrium problems, J. Math. Anal. App., 306 No. 2 (2005), 684-691. | MR 2136342 | Zbl 1068.49005
- ,[2] Quantitative stability of variational systems: I. The epigraphical distance, Trans. Am. math. Soc., 328 No. 2, (1991), 695-729. | MR 1018570 | Zbl 0753.49007
- ,[3] Lipschitz behavior of solutions to convex minimization problems, Math. Oper. Res., 9 (1984), 87-111. | MR 736641 | Zbl 0539.90085
,[4] Quasi-Variational inequalities in Transportation networks, Math. Models. Meth. Appl. Sci, 14, No. 10 (2004), 1541-1560. | MR 2095302 | Zbl 1069.90026
,[5] Sensitivity analysis of generalized equations, Journal of Mathematical Sciences, 115 (2003), 2554-2565. | MR 1992992 | Zbl 1136.90482
,[6] Sensitivity analysis of parameterized variational inequalities, Mathematics of Operations Research, 30 (2005), 109-126. | MR 2125140 | Zbl 1082.49015
,[7] A Lipschitzian of convex polyhedral, Proc. Amer. Math. Society, 23 (1969), 167-178. | MR 246200 | Zbl 0182.25003
- ,