We analyse mean values of functions with values in the boundary of a convex two-dimensional set. As an application, reverse integral inequalities imply exactly the same inequalities for the monotone rearrangement. Sharp versions of the classical Gehring lemma, the Gurov-Resetnyak theorem and the Muckenhoupt theorem are obtained.
Si studiano medie di funzioni con valori sulla frontiera di un insieme convesso bidimensionale. Come applicazione si prova che disuguaglianze integrali inverse implicano esattamente le stesse disuguaglianze per il riordinamento monotono. Si ottengono quindi versioni ottimali del classico lemma di Gehring, del teorema di Gurov-Reshetnyak e del teorema di Muckenhoupt.
@article{BUMI_2005_8_8B_3_737_0, author = {Werner Clemens}, title = {Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {737-764}, zbl = {1115.26016}, mrnumber = {2182427}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_737_0} }
Clemens, Werner. Mean values of convexly arranged numbers and monotone rearrangements in reverse integral inequalities. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 737-764. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_737_0/
[ApSb90] Reverse Hölder Inequalities - A sharp Result, Rend. di Matematica, (Ser. 7), 10 (1990), 357-366. | MR 1076164 | Zbl 0711.42027
- ,[BeSh88] 1988, Pure and Applied Mathematics, 129. | MR 928802 | Zbl 0647.46057
- , Interpolation of Operators, Academic Press[Boj85] Remarks on the stability of reverse Hölder inequalities and quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A.I. Math., 10 (1985), 89- 94. | MR 802470 | Zbl 0582.30016
,[BoIw83] Analytical foundation of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A. I. Math., 8 (1983), 257-324. | MR 731786 | Zbl 0548.30016
- ,[Fio96] Regularity Results for Minimizers of Certain One-Dimensional Lagrange Problems of Calculus of Variations, Bollettino U.M.I., (7) 10B (1996), 943-962, | MR 1430161 | Zbl 0909.49025
,[FrMo85] Higher integrability results, Manuscripta Math., 52 (1985), 151-170. | MR 790797 | Zbl 0576.42022
- ,[GaRu85] Weighted norm inequalities and related topics, North-Holland Math. Studies, 116 (1985). | MR 807149 | Zbl 0578.46046
- ,[Geh73] The -integrability of the partial derivates of a quasiconformal mapping, Acta Math., 130 (1973), 265-277. | MR 402038 | Zbl 0258.30021
,[Gia83] 105, Princeton Univ. Press (1983). | MR 717034 | Zbl 0516.49003
, Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Study,[Gia93] | MR 1239172 | Zbl 0786.35001
, Introduction to regularity theory for nonlinear elliptic systemsBirkhäuser Verlag, Basel, Boston, Berlin1993.[GuRe76] A certain analogue of the concept of a function with bounded mean oscillation Sibirsk., Math. Zh., 17, 3 (1976), 540- 546. | MR 427565 | Zbl 0341.26006
- ,[Iwa82] On -integrability in PDE's and quasiregular mappings for large exponents, Ann. Acad. Sci. Fenn. Ser. A. I., 7 (1982), 301-322. | MR 686647 | Zbl 0505.30011
,[Iwa98] The Gehring Lemma, Proc. of the int. Symp., Ann Arbor, MI, USA (1998), 181-204. | MR 1488451 | Zbl 0888.30017
,[IwMa01] | MR 1859913 | Zbl 1045.30011
- , Geometric function theory and non-linear analysis, Oxford Math. Mono., Oxford Univ. Press, Oxford, 2001.[Kle85] A mean oscillation inequality, Proc. Am. Math. Soc., 93, Nr. 3 (1985), 497-500. | MR 774010 | Zbl 0572.46025
,[Kin94] Sharp results on reverse Hölder inequalities, Ann. Acad. Sci. Fenn., Ser. A, 1. Mathematica, Dissert., 95 (1994), 4-34. | MR 1283432 | Zbl 0816.26008
,[Kol89] Rearrangements of functions and imbedding theorems, Russ. Math. Surv., 44, No. 5 (1989), 73-117. | MR 1040269 | Zbl 0715.41050
,[Kor92a] The exact continuation of a reverse Hölder inequality and Muckenhoupt's conditions, Math. notes, 52, No. 6 (1992), 1192-1201. | MR 1208001 | Zbl 0807.42015
,[Kor92b] On the connection between mean value oscillation and exact integrability classes of functions, Math. USSR Sbornik, 71, No. 2 (1992), 561-567; transl. from Mat. Sb., 181, No. 12 (1990), 1721-1727. | MR 1099524 | Zbl 0776.30025
,[Muc72] Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226. | MR 293384 | Zbl 0236.26016
,[Nan90] On some reverse integral inequalities, J. Austral. Math. Soc. (Ser. A) 49 (1990), 319-326. | MR 1061052 | Zbl 0715.26010
,[Sag94] | MR 1299533 | Zbl 0806.01019
, Space-filling curves, Springer Verlag, New York, 1994.[Sbo86] On some integral inequalities and their applications to the calculus of variations, Boll. Un. Mat. Ital., Ana. Func. Appl., 5-10(6,1) (1986), 73-94. | MR 897186 | Zbl 0678.49008
,[Ste93] Harmonic analysis: Real-variable methods, orthogonality and oscillatory integrals. Princeton Math. Series, 43, Princeton, New Jersey1993. | MR 1232192 | Zbl 0821.42001
,[Wik90] Reverse Hölder inequalities with constant close to 1, Ric. Mat., 39, No. 1 (1990), 151-157. | MR 1101311 | Zbl 0746.30022
,