The class of Rosenthal linear relations in normed spaces is introduced and studied in terms of their first and second conjugates. We investigate the relationship between a Rosenthal linear relation and its conjugate. In this paper, we also study the semi-Tauberian linear relations following the pattern followed for the study of the Tauberian linear relations. We prove that the semi-Tauberian linear relations share some of the properties of Tauberian linear relations and they are related to Rosenthal linear relations in the same way as Tauberian linear relations are related to weakly compact linear relations. We describe examples and investigate special cases: in particular, and strictly singular linear relations.
Si introduce la classe delle relazioni lineari di Rosenthal in spazi normati e si studia in termini dei suoi coniugati primi e secondi. Si analizza il rapporto fra una relazione lineare di Rosenthal e il suo coniugato. Nell'articolo si studiano inoltre le relazioni lineari semi-Tauberiane che seguono il modello adottato nello studio delle relazioni lineari Tauberiane. Si dimostra che le relazioni lineari semi-Tauberiane condividono alcune delle proprietà delle relazioni lineari Tauberiane e che stanno in relazione alle relazioni lineari di Rosenthal nello stesso modo in cui le relazioni lineari Tauberiane si trovano in relazione con le relazioni lineari debolmente com- patte. Si descrivono esempi e si discutono casi particolari, e le relazioni lineari strettamente singolari.
@article{BUMI_2005_8_8B_3_707_0, author = {Teresa \'Alvarez and Antonio Mart\'\i nez-Abej\'on}, title = {Rosenthal and semi-Tauberian linear relations in normed spaces}, journal = {Bollettino dell'Unione Matematica Italiana}, volume = {8-A}, year = {2005}, pages = {707-722}, zbl = {1179.47019}, mrnumber = {2182425}, language = {en}, url = {http://dml.mathdoc.fr/item/BUMI_2005_8_8B_3_707_0} }
Álvarez, Teresa; Martínez-Abejón, Antonio. Rosenthal and semi-Tauberian linear relations in normed spaces. Bollettino dell'Unione Matematica Italiana, Tome 8-A (2005) pp. 707-722. http://gdmltest.u-ga.fr/item/BUMI_2005_8_8B_3_707_0/
[1] A note on three-space ideals of Banach spaces, Proceedings of the Tenth Spanish-Portuguese Conference on Mathematics, III (Murcia, 1985), Univ. Murcia (1985), 251-254. | MR 844105
- ,[2] Adjoint characterisations of unbounded weakly compact, weakly completely continuous and unconditionally converging operators, Studia Math., 113 (3) (1995), 293-298. | MR 1330212 | Zbl 0823.47020
- - ,[3] Factorization of unbounded thin and cothin operators, Quaestiones Math., 22 (1999), 519-529. | MR 1776243 | Zbl 0964.47009
- - ,[4] | MR 755330 | Zbl 0538.34007
- , Differential Inclusions, Springer-Verlag, New York, 1984.[5] | MR 1048347 | Zbl 1168.49014
- , Set Valued Analysis, Birkhauser, Boston, 1990.[6] A double-dual characterisation of Rosenthal and semi-Tauberian operators, Proc. Royal Irish Acad., Ser. A, 95 (1995), 69-75. | MR 1369046 | Zbl 0856.47003
- ,[7] | MR 709590 | Zbl 0696.49002
, Optimization and Nonsmooth Analysis, Wiley-Interscience Publication, Wiley and Sons, Toronto, 1983.[8] Properties of Some Norm Related Functions of Unbounded Linear Operators, Math. Z., 199 (1988), 285-303. | MR 958653 | Zbl 0639.47009
,[9] A characterisation of almost reflexive normed spaces, Proc. Royal Irish Acad., Ser. A 92 (1992), 225-228. | MR 1204221 | Zbl 0741.46005
,[10] 213, Marcel Dekker, New York, 1998. | MR 1631548 | Zbl 0911.47002
, Multivalued Linear Operators, Monographs and Textbooks in Pure and Applied Mathematics,[11] Factoring weakly compact operators, J. Funct. Anal., 17 (1974), 311-327. | MR 355536 | Zbl 0306.46020
- - - ,[12] Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura. Appl. (4) 163 (1993), 353-384. | MR 1219605 | Zbl 0786.47037
- ,[13] On a summability theorem of Berg, Crawford and Whitley, Math. Proc. Camb. Phil. Soc., 71 (1972), 495-497. | MR 294946 | Zbl 0233.46026
- ,[14] Semi-Fredholm operators and semigroups associated with some classical operator ideals, Proc. Royal Irish Acad., Ser. A 88 A (1988), 35- 38. | MR 974281 | Zbl 0633.47029
- ,[15] Dual results of factorization for operators, Ann. Acad. Sc. Fenn., Ser. A. I. Math. 18 (1993), 3-11. | MR 1207890 | Zbl 0795.46013
,[16] | MR 864505 | Zbl 0651.53001
, Partial differential relations, Springer-Verlag, Berlin, 1986.[17] Some Properties of the Second Conjugate of a Tauberian operator, J. Math. Anal. Appl., 228 (1998), 60-65. | MR 1659952 | Zbl 0918.47004
,[18] Tauberian operators in Banach spaces, Proc. Amer. Math. Soc., 57 (1976), 251-255. | MR 473896 | Zbl 0304.47023
- ,[19] | Zbl 0102.37602
, Topologie I, Polska Akademia Nauk.Warsaw, 1952.[20] | MR 500056 | Zbl 0362.46013
- , Classical Banach spaces I, Springer-Verlag, Berlin, 1977.[21] Continuous selections I, II, III, Annals of Math., 63, 361-381; 64, 562-580; 65, 375-390. | MR 77107 | Zbl 0088.15003
,[22] Properties of Tauberian operators in Banach spaces, Ph. D. Thesis, Univ. Texas, 1984.
,[23] 22, Princeton University Press, Princeton N. J., 1950. | Zbl 0039.11701
, Functional Operators, Vol.2: The Geometry of Orthogonal spaces, Ann. Math. Stud.,[24] For a Banach space isomorphic to its square the Radon-Nikodym property and the Krein-Milman property are equivalent, Studia Math., 81 (1985), 329-338. | MR 808576 | Zbl 0631.46019
,[25] Generalised semi-Fredholms transformations, J. Austral. Math. Soc., A 34 (1983), 60-70. | MR 683179 | Zbl 0531.47011
,[26] Multivalued Semi-Fredholm Operators in Normed Linear Spaces, Ph. D. THESIS, Univ. Cape Town, 2001.
,[27] The generalized Fredholm operators, Trans. Amer. Math. Soc., 219 (1976), 313-326. | MR 423114 | Zbl 0297.47027
,